
Elementary Statistics with R Programming

Table of contents

PREFACE 5

SETTING-UP COMPUTING ENVIRONMENT 6
Setting up your own computing environment on a personal computer 6
Use R-Studio Cloud (No setting-up needed) . 6

1 QUICK START TO R PROGRAMMING 7
1.1 1-minture R Programming Introduction . 7

2 EXPLORING DATA WITH TABLES AND GRAPHS 9
2.1 Frequency Distributions . 10

2.1.1 Frequency distributions . 10
2.1.2 Relative frequency distributions . 10

2.2 Histograms . 11
2.2.1 Histogram . 11
2.2.2 Relative frequency histogram . 12
2.2.3 Common distributions . 12
2.2.4 Normal quantile plots . 15
2.2.5 Let’s put it all together! . 17

2.3 Graphs that enlighten and graphs that deceive 19
2.3.1 Dotplot . 20
2.3.2 Stem plot . 21
2.3.3 Scatter Plot . 22
2.3.4 Time-series Graph . 24
2.3.5 Pie Chart . 25
2.3.6 Pareto Chart . 28
2.3.7 Let’s put it all together! . 29

2.4 Scatter plots, correlation, and regression . 30
2.4.1 Linear correlation . 30
2.4.2 Regression line . 33
2.4.3 Let’s put it all together! . 34

3 DESCRIBING, EXPLORING, and COMPUTING DATA 37
3.1 Measures of center . 37

3.1.1 Mean . 38
3.1.2 Median . 39
3.1.3 Mode . 39
3.1.4 Midrange . 40

2

3.1.5 Let’s put it all togeher! . 40
3.2 Measures of variation . 42

3.2.1 Visualizing variation . 42
3.2.2 Range . 44
3.2.3 Standard deviation . 44
3.2.4 Variance . 45
3.2.5 Let’s put it all togeher! . 46

3.3 Measures of relative standing and boxplots 47
3.3.1 z-Scores . 47
3.3.2 Percentiles . 50
3.3.3 Quartiles & the 5-number summary 50
3.3.4 Boxplot . 51
3.3.5 Let’s put it all together! . 57

4 PROBABILITY 61
4.1 Basic concepts of probability . 61
4.2 Addition rule and multiplication rule . 63
4.3 Complements, conditional probability, and Bayes’ theorem 63
4.4 Counting . 63

4.4.1 Calculate factorial 𝑛! . 63
4.4.2 Find all permutations and the number of all permutations 64
4.4.3 Find all combinations and the number of all combinations 65

5 DISCRETE PROBABILITY DISTRIBUTION 67
5.1 Probability distribution . 67

5.1.1 Calculate sample mean, standard deviation and variance with equal
probability . 67

5.1.2 Expectation and standard deviation with a given probability distribution 68
5.1.3 Median . 69

5.2 Binomial probability distributions . 70
5.3 Poisson probability distributions (Optional) 73

6 NORMAL PROBABILITY DISTRIBUTION 75
6.1 The standard normal distribution . 75

6.1.1 Normal distribution graph (Optional) 75
6.1.2 Find the probability (area) when z scores are given 76
6.1.3 Find z scores when the area is given 76

6.2 Real application of normal distribution . 77
6.2.1 Convert an individual x value to a z-score 77
6.2.2 Find the probability when x value is given (page 269 Pulse Rates

Question) . 77
6.2.3 Convert a z-score back to x value . 78

6.3 Sampling distributions and estimators (Optional) 78
6.3.1 General behavior of sampling distribution of sample proportions . . . 78
6.3.2 General behavior of sampling distribution of sample means 79

3

6.3.3 General behavior of sampling distribution of sample variances 80
6.4 The central limit theorem . 81

6.4.1 Find the probability when individual value is used (Page 292 Ejection
Seat Question) . 81

6.4.2 Find the probability when sample mean is used (Page 292 Ejection
Seat Question) . 81

7 ESTIMATING PARAMETERS AND DETERMINGING SAMPLE SIZES 83
7.1 Estimating a population proportion (Page 313 Online Course Example) . . . 83

7.1.1 Getting the CI directly . 83
7.1.2 Getting the CI step by step using the textbook’s Wald’s Method

(slightly different result than the result given above) 84
7.2 Estimating a population mean . 85

7.2.1 Get the CI directly with sample data values given. (Page 343 Mercury
question) . 85

7.2.2 Get the CI step by step with given mean and standard deviation (Page
341 Hershey kisses question) . 85

7.3 Estimating a population Deviation or Variance (body temperature example
page 353) . 86
7.3.1 Critical values . 86
7.3.2 Confidence interval . 87

8 HYPOTHESIS TESTING 88
8.1 Basic of hypothesis testing . 88
8.2 Testing a claim about a proportion . 89

8.2.1 Two-sided proportion test using the 𝑧-test (method in the textbook) . 90
8.2.2 Two-sided proportion test using the built-in function prop.test . . . 91
8.2.3 One-sided proportion test . 92

8.3 Testing a claim about a mean . 93
8.3.1 Unknown 𝜎 with Nnormality assumption 93
8.3.2 Known 𝜎 with normality assumption 96

9 INFERENCE FROM TWO SAMPLES 99

10 CORRELATION AND REGRESSION 100
10.1 Correlation . 100
10.2 Linear regression . 103

References 106

4

PREFACE

This is an R-manual that accompanies the textbook Triola (2022) for the courses STAT 2670:
Elementary Statistics offered at Auburn University at Montgomery.

Credits:

• Jerome Goddard (Chapters 2 and 3)
• Yi Wang (Chapters 0, 1, 4 and 5; Overall editing)
• Wen Tang (Chapters 6 and 7)
• Jieun Park (Chapters 8 and 10)

5

SETTING-UP COMPUTING
ENVIRONMENT

Setting up your own computing environment on a personal
computer

This is the recommended way and the advantage is that it’s easy to handle files.

• Go to the website https://posit.co/download/rstudio-desktop/.
• Follow the two steps:

1) download and install R: Choose the appropriate operating system, and then
choose “base” to “install R for the first time”. You can simply accept all default
options.

2) download Rstudio Desktop and Install it.

After installation, start R-Studio, and you are ready to use it.

Use R-Studio Cloud (No setting-up needed)

Alternatively, one can save the hassle of setting up on a personal computer and use the
R-Studio Cloud for free. Here are the steps:

• Go to the website https://login.rstudio.cloud/.

• Either create a new account using an email address such as your AUM email or simply
“Log in using Google” or click on other log-in alternative.

After log-in to your account, you are ready to use R Studio.

6

https://posit.co/download/rstudio-desktop/
https://login.rstudio.cloud/

1 QUICK START TO R PROGRAMMING

1.1 1-minture R Programming Introduction

Variables: To create a variable, use the assignment operator <-. For example,

x <- 5

Data Structures: R supports various data structures such as vectors, matrices, arrays,
lists, and dataframes. For instance, you can create a vector using c() like

my_vector <- c(1, 2, 3, 4, 5)

To index the second element of my_vector, use [] operator:

my_vector[2]

[1] 2

The output after running the code my_vector[2] is displayed as [1] 2, where [1] indicates
the first line of the output, and 2 is the value of my_vector[2].

To print a formatted output, use the built-in function cat to concatenate strings enclosed
in double quotes ""(or equivalently single quotes ' '). Note "\n" represents a newline feed.
For example:

cat("The first element in my_vector is:", my_vector[1], "\n")

The first element in my_vector is: 1

Functions: Functions in R are defined using the function() keyword. For example, you
can create a function as follows:

my_sum <- function(arg1, arg2) {
function body
return(arg1 + arg2) #return the sum of arg1 and arg2

}

7

Code comment: A code comment starts with #. A comment line will not affect your code.
When a R-code is executed, a comment line will be ignored by the R-code interpreter. When
you are following along with the code in this manual, you do not need to type
the line starting with #. They are provided to interpret the codes.

Control Structures: R supports typical control structures like if-else statements, for
loops, while loops, etc.

Packages: R’s functionality can be extended through packages. You can install pack-
ages using the install.packages("package_name") function and load them using the
library("package_name") function.

Data Manipulation and Analysis: R provides powerful tools for data manipulation and
analysis. Packages like dplyr and ggplot2 are commonly used for data manipulation and
visualization, respectively.

Help: to access the help document, type in the R-console: ?function_name or
help(function_name). For example, ?mean or help(mean).

8

2 EXPLORING DATA WITH TABLES AND
GRAPHS

r-function Description
data('dataset_name') Load a R built-in dataset named by dataset_name
table(x) Generate a frequency table for x
length(x) Return the length of the vector x
cat Concatenate strings and variable values for formatted print
round (x, digits=2) round x element-wise with 2 decimal digits
hist(x) Plot histogram of the 1-D data x. Optional arguments: main:

main title; xlab: x-label; ylab: y-label; col: color. Pass
freq=FALSE for a relative frequency histogram.

rnorm(n,mean,sd) Generate n random values of standard normal distribution with
the given mean and sd.

runif(n, min, max) Generate n uniformly distributed random values between min
(inclusive) and max (inclusive).

rexp(n,r) Generate n exponentially distributed values with rate r at which
events occurs on average

qqnorm(x) Plot a Q-Q plot of x against a standard normal distribution
qqline(x) add a reference line to a Q-Q plot created by qqnorm() to

indicate the theoretical Q-Q plot of a normal distribution.
dotchart(x) Create a dotplot for the 1-D data x
stem(x) Create a stem plot for the 1-D data x
plot(x,y, type='p') Plot the scatter plot of data sets (x,y). If x is a dataframe, and

no y is provided, then plot each column of x against the
dataframe index. type: 'p' for points, 'l' for line, and 'b' for
both.

ts.plot(x) Plot the time series x.
pie(x, labels) Plot the pie chart of x using labels
pareto.chart(x) Create Pareto chart of the 1-D data x using package qcc
cor.test(x,y) Perform the correlation test between x and y. The function

returns an object that contains three attributes: estimate:
which is the correlation r value depending on a method:
“pearson”(default),“kendall”, or “spearman”; p.value: which is
the test statistics p-value; conf.int: which is the confidence
interval for the default conf.level 0.95. The alternative
hypothesis is “two.sided” (default), “less”, “greater”.

9

r-function Description
lm(y~x, data) Perform the linear regression of y~x, where y,x are column

names in the dataframe data.
abline(reg_model,
col="red")

Add a regression line from the reg_model in red.

abline(a,b) Add a line with intercept a and slope b
abline(h=y_value) Add a horizontal line at y=y_value
abline(v=x_value) Add a vertical line at x=x_value

2.1 Frequency Distributions

Frequency distribution shows the count or frequency of each unique value or category in
a dataset, providing a clear picture of how data is distributed across different values or
groups.

2.1.1 Frequency distributions

The R command table() will generate a frequency distribution for any data set. Let’s
analyze example test scores from a fictional math class. Notice the first row of the output
is the data name, the second row is the actual data, and the third row contains the number
of times each data value appears.

Load test data into a variable names scores
scores <- c(95, 90, 85, 85, 87, 74, 75, 64, 85, 84, 87, 15, 20, 75, 75, 90, 75)

Create a frequency table for the scores data
table(scores)

scores
15 20 64 74 75 84 85 87 90 95
1 1 1 1 4 1 3 2 2 1

2.1.2 Relative frequency distributions

Relative frequency distributions give similar information as a frequency distribution except
they use percentages. Let’s examine the same scores data set defined above. Notice in
the output that the second row is the actual data and the third row contains the relative
frequencies (rounded to two decimal places).

10

Create a relative frequency table for the scores data
rftable <- table(scores)/length(scores)
round(rftable, digits = 2)

scores
15 20 64 74 75 84 85 87 90 95

0.06 0.06 0.06 0.06 0.24 0.06 0.18 0.12 0.12 0.06

2.2 Histograms

A histogram is a bar chart that shows how often different values occur in a dataset.

2.2.1 Histogram

The command hist() will generate a histogram for any data. Here is an example using our
scores data from above. Notice the x-axis represents the actual scores and the y-axis shows
the frequency of the data points. We will use the following command options: 1) main allows
the title to be specified, 2) xlab sets the x-axis label, and 3) ylab sets the y-axis label.

Create a histogram and customize the axis labels and title
main is the Plot title, xlab is the x-axis label, & ylab is the y-axis label
hist(scores, main = "Histogram for test scores", xlab = "Test Scores",

ylab = "Frequency")

Histogram for test scores

Test Scores

F
re

qu
en

cy

20 40 60 80 100

0
2

4
6

8

11

2.2.2 Relative frequency histogram

A relative histogram is a bar chart that displays the proportion or percentage of values in
different bins within a dataset, providing a relative view of the data distribution.

Using freq = FALSE in hist() will create a relative frequency histogram
hist(scores, freq = FALSE, main = "Relative frequency histogram",

xlab = "Test Scores", ylab = "Relative Frequency")

Relative frequency histogram

Test Scores

R
el

at
iv

e
F

re
qu

en
cy

20 40 60 80 100

0.
00

0.
02

0.
04

2.2.3 Common distributions

Normal distributions are bell-shaped and symmetrical, uniform distributions have constant
probabilities across a range, skewed right distributions are characterized by a long tail on
the right side, and skewed left distributions have a long tail on the left side, each exhibiting
distinct patterns of data distribution. We will use the hist() command to explore each of
these common distributions in the code below.

Sample normal distribution
n <- 100
mean <- 69
sd <- 3.6
normalData <- rnorm(n, mean, sd)

Sample uniform distribution using the command runif

12

uniformData <- runif(50000, min = 10, max = 11)

Sample of a distribution that is skewed right
skewedRightData <- rexp(1000, 0.4)

Sample of a distribution that is skewed left
skewedLeftData <- 1 - rexp(1000, 0.2)

Create histogram of normal data
hist(normalData, main = "Normal distribution")

Normal distribution

normalData

F
re

qu
en

cy

60 65 70 75

0
5

10
15

20

Create histogram of uniform data
hist(uniformData, main = "Uniform distribution")

13

Uniform distribution

uniformData

F
re

qu
en

cy

10.0 10.2 10.4 10.6 10.8 11.0

0
10

00
20

00

Create histogram of skewed right data
hist(skewedRightData, main = "Distribution that is skewed right")

Distribution that is skewed right

skewedRightData

F
re

qu
en

cy

0 5 10 15 20

0
20

0
40

0

Create histogram of skewed left data
hist(skewedLeftData, main = "Distribution that is skewed left")

14

Distribution that is skewed left

skewedLeftData

F
re

qu
en

cy

−30 −20 −10 0

0
20

0
40

0

2.2.4 Normal quantile plots

A normal quantile plot, also known as a Q-Q plot, is a graphical tool used to assess whether
a dataset follows a normal distribution by comparing its quantiles (ordered values) to the
quantiles of a theoretical normal distribution; if the points closely follow a straight line, the
data is approximately normal. Let’s use the commands qqnorm() and qqline() to visually
test which data set is most likely a sample from a normal distribution.

Test normalData from above
qqnorm(normalData, main = "Q-Q Plot for normalData")
qqline(normalData)

15

−2 −1 0 1 2

65
70

75
Q−Q Plot for normalData

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Notice that the normalData Q-Q plot shows the points close to the Q-Q line over the entire
x-axis.

Test uniformData from above
qqnorm(uniformData, main = "Q-Q Plot for uniformData")
qqline(uniformData)

−4 −2 0 2 4

10
.0

10
.4

10
.8

Q−Q Plot for uniformData

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

16

For the uniformData dataset, the Q-Q plot shows good agreement between points and line
in the center (around 0) but not on either left or right of the x-axis.

2.2.5 Let’s put it all together!

In the built-in R dataset ChickWeight, weights are taken from several groups of chickens
that were fed various diets. We are asked to use both histogram and Q-Q plots to determine
if weights from group 1 and 4 are approximately normal, uniform, skewed left, or skewed
right.

Load data from the built-in dataset into a variable named ChickWeight
data("ChickWeight")

Extract all weights from group 1
group1Weights <- ChickWeight[ChickWeight$Diet == 1, 1]

Extract all weights from group 4
group4Weights <- ChickWeight[ChickWeight$Diet == 4, 1]

Create a histogram of weights from group 1
hist(group1Weights, main = "Group 1 weights", xlab = "Weight", ylab = "Frequency")

Group 1 weights

Weight

F
re

qu
en

cy

0 50 100 150 200 250 300 350

0
20

40
60

80

Create a histogram of weights from group 4
hist(group4Weights, main = "Group 4 weights", xlab = "Weight", ylab = "Frequency")

17

Group 4 weights

Weight

F
re

qu
en

cy

0 50 100 150 200 250 300 350

0
5

15
25

Is the group 1 distribution approximately normal or would a different distribution be a better
fit? What about group 4? Now, let’s confirm our results using Q-Q plots.

Test group1Weights from above
qqnorm(group1Weights, main = "Q-Q Plot for Group 1")
qqline(group1Weights)

−3 −2 −1 0 1 2 3

50
15

0
25

0

Q−Q Plot for Group 1

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

18

Test group4Weights from above
qqnorm(group4Weights, main = "Q-Q Plot for Group 4")
qqline(group4Weights)

−2 −1 0 1 2

50
15

0
25

0

Q−Q Plot for Group 4

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Does the Q-Q plot confirm your guess from our visual inspection? Which group is closer to
a normal distribution?

2.3 Graphs that enlighten and graphs that deceive

R has many commands to illustrate data revealing hidden patterns that could be otherwise
missed. We will explore several of these commands using three different datasets:

(A) Chicken Weights: Same data used in Section 2.2: two different groups of chickens
fed with different feed.

(B) Airline Passengers: A time series of the number of airline passengers in the US by
month.

(C) US Personal Expenditure Average personal expenditures for adults in the US from
1960.

Below we will load these data sets when we need them.

19

2.3.1 Dotplot

A dotplot is a simple graphical representation of data in which each data point is shown as
a dot above its corresponding value on a number line, helping to visualize the distribution
and identify patterns in a dataset. With our data previously loaded from the previous run,
let’s create a dotplot of the data. First for weights of both groups of chickens.

Chicken weights:
Load data from the built-in dataset into a variable named ChickWeight
data("ChickWeight")

Extract all weights from group 1
group1Weights <- ChickWeight[ChickWeight$Diet == 1, 1]

Extract all weights from group 4
group4Weights <- ChickWeight[ChickWeight$Diet == 4, 1]

Dotplot for group 1 chickens
dotchart(group1Weights, main = "Dotplot of Group 1 chicken weights", xlab = "Weight")

50 100 150 200 250 300

Dotplot of Group 1 chicken weights

Weight

Dotplot for group 4 chickens
dotchart(group4Weights, main = "Dotplot of Group 4 chicken weights", xlab = "Weight")

20

50 100 150 200 250 300

Dotplot of Group 4 chicken weights

Weight

2.3.2 Stem plot

A stem plot, also known as a stem-and-leaf plot (or just stemplot), is a graphical represen-
tation of data where each data point is split into a “stem” (the leading digit or digits) and
“leaves” (the trailing digits) to display the individual values in a dataset while preserving
their relative order, making it easier to see the distribution and identify key data points.
Let’s create a stemplot for our chicken weight data from above.

Stemplot of group 1 weights
stem(group1Weights)

The decimal point is 1 digit(s) to the right of the |

2 | 599
4 | 011111111112222223334578889999999901111112344556667788999
6 | 001122233445557777888801111122234446799
8 | 112344445788999901233366678889
10 | 0011233666780222355679
12 | 00234455683456889
14 | 112468945777
16 | 0002234481457
18 | 124577257899
20 | 255958

21

22 | 037
24 | 809
26 | 6
28 | 8
30 | 5

Stemplot of group 4 weights
stem(group4Weights)

The decimal point is 1 digit(s) to the right of the |

2 | 9
4 | 0011122229001123345
6 | 122345667989
8 | 024455668
10 | 0133345878
12 | 02345678158
14 | 14567823455677
16 | 068034455
18 | 44458677899
20 | 03445500
22 | 2134478
24 |
26 | 1449
28 | 1
30 | 3
32 | 2

2.3.3 Scatter Plot

A scatter plot is a graphical representation that displays individual data points on a two-
dimensional plane, with one variable on the x-axis and another on the y-axis, allowing you
to visualize the relationship, pattern, or correlation between the two variables.

Sample data
x <- c(1, 2, 3, 4, 5)
y <- c(2, 3, 5, 4, 6)

Create scatter plot
plot(x, y, main = "Scatter Plot Example", xlab = "X-axis", ylab = "Y-axis")

22

1 2 3 4 5

2
3

4
5

6
Scatter Plot Example

X−axis

Y
−

ax
is

Real Data Example Let’s create a scatter plot using the R command plot() for the US
airline passengers by month using our data from above.

Airline passengers:
Load from the built-in dataset. This will create a variable named AirPassengers
containing the time series.
data("AirPassengers")

Plot each column against the row index (year). type="p" for points.
plot(AirPassengers, main = "US airline passengers by month", xlab = "Time",

ylab = "Total Passengers", type = "p")

23

US airline passengers by month

Time

To
ta

l P
as

se
ng

er
s

1950 1952 1954 1956 1958 1960

10
0

30
0

50
0

Notice the overall increasing trend of the data.

2.3.4 Time-series Graph

A time series is a sequence of data points collected or recorded at successive points in time,
typically at evenly spaced intervals, and a time series graph visually represents this data
over time, allowing us to observe trends, patterns, and changes in the data’s behavior. Let’s
use the R command ts.plot() to plot the total US airline passengers by month using our
data from above.

Time series plot of AirPassengers
ts.plot(AirPassengers, main = "US airline passengers by month", xlab = "Time",

ylab = "Total Passengers")

24

US airline passengers by month

Time

To
ta

l P
as

se
ng

er
s

1950 1952 1954 1956 1958 1960

10
0

30
0

50
0

The time series graph shows several interesting phenomena: 1) airline travel is seasonal with
the same basic pattern repeated each year and 2) the overall trend is increasing.

2.3.5 Pie Chart

A pie chart is a circular graph that visually represents data as slices, with each slice showing
the proportion or percentage of different categories in the whole dataset.
A pie chart can be easily created as in the followng example:

Creating sample data
data <- c(30, 20, 50) # Example data for the pie chart
labels <- c("Category A", "Category B", "Category C") # Labels for each category

Creating a pie chart
pie(data, labels = labels, main = "Pie Chart Example")

25

Category A
Category B

Category C

Pie Chart Example

Real Data Example

Let’s use a pie chart to visualize the difference between average personal expenditure in the
US in 1940 vs 1960 using USPeronalExpenditure defined above.

Personal expenditure:
Load from the built-in dataset. This will create a variable named
USPersonalExpenditure containing the data.
data("USPersonalExpenditure")

We now extract only information from 1940
expenditures1940 <- USPersonalExpenditure[1:5]

We now extract only information from 1960
expenditures1960 <- USPersonalExpenditure[21:25]

Define categories for expenditure data
cats <- c("Food and Tobacco", "Household Operation", "Medical and Health",

"Personal Care", "Private Education")

Define category names from cats above
names(expenditures1940) <- cats
names(expenditures1960) <- cats

Pie chart of 1940 expenditures: labels allows us to name the categories as
defined in cats above

26

pie(expenditures1940, main = "US personal expenditures in 1940")

Food and Tobacco

Household Operation

Medical and Health

Personal CarePrivate Education

US personal expenditures in 1940

Pie chart of 1960 expenditures: labels allows us to name the categories as
defined in cats above
pie(expenditures1960, main = "US personal expenditures in 1960")

Food and Tobacco

Household Operation
Medical and Health

Personal Care
Private Education

US personal expenditures in 1960

27

2.3.6 Pareto Chart

A Pareto chart is a specialized bar chart that displays data in descending order of frequency or
importance, highlighting the most significant factors or categories, making it a visual tool for
prioritization and decision-making. Let’s use the expenditures1940 and expenditures1960
data from above to illustrate the usefulness of a Pareto chart.

The first time you run this code, you will need to install the following package.
After this initial run, you can skip running this code:

Installs the package 'qcc'. ONLY RUN THIS CODE ONCE!
install.packages('qcc')

Now, let’s create Pareto charts for the 1940 and 1960 expenditure data.

Load 'qcc' package
library(qcc)

Create the Pareto chart for 1940 data
pareto.chart(expenditures1940, xlab = "", ylab="Frequency",

main = "US personal expenditures in 1940")

F
oo

d
an

d
To

ba
cc

o

H
ou

se
ho

ld
 O

pe
ra

tio
n

M
ed

ic
al

 a
nd

 H
ea

lth

P
er

so
na

l C
ar

e

P
riv

at
e

E
du

ca
tio

n

F
re

qu
en

cy

US personal expenditures in 1940

0
20

0%
75

%

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Pareto chart analysis for expenditures1940
Frequency Cum.Freq. Percentage Cum.Percent.

28

Food and Tobacco 22.2000000 22.2000000 59.0252852 59.0252852
Household Operation 10.5000000 32.7000000 27.9173646 86.9426498
Medical and Health 3.5300000 36.2300000 9.3855521 96.3282019
Personal Care 1.0400000 37.2700000 2.7651485 99.0933503
Private Education 0.3410000 37.6110000 0.9066497 100.0000000

Create the Pareto chart for 1960 data
pareto.chart(expenditures1960, xlab = "", ylab="Frequency",

main = "US personal expenditures in 1960")

F
oo

d
an

d
To

ba
cc

o

H
ou

se
ho

ld
 O

pe
ra

tio
n

M
ed

ic
al

 a
nd

 H
ea

lth

P
er

so
na

l C
ar

e

P
riv

at
e

E
du

ca
tio

n

F
re

qu
en

cy

US personal expenditures in 1960

0
10

0

0%
75

%

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Pareto chart analysis for expenditures1960
Frequency Cum.Freq. Percentage Cum.Percent.

Food and Tobacco 86.800000 86.800000 53.205835 53.205835
Household Operation 46.200000 133.000000 28.319235 81.525070
Medical and Health 21.100000 154.100000 12.933677 94.458747
Personal Care 5.400000 159.500000 3.310040 97.768788
Private Education 3.640000 163.140000 2.231212 100.000000

2.3.7 Let’s put it all together!

Using the built-in dataset for quarterly profits of the company Johnson & Johnson, load the
data and view it using this code.

29

Johnson & Johnson Profits:
Load data from the built-in dataset into a variable named JohnsonJohnson
data("JohnsonJohnson")

JohnsonJohnson

Qtr1 Qtr2 Qtr3 Qtr4
1960 0.71 0.63 0.85 0.44
1961 0.61 0.69 0.92 0.55
1962 0.72 0.77 0.92 0.60
1963 0.83 0.80 1.00 0.77
1964 0.92 1.00 1.24 1.00
1965 1.16 1.30 1.45 1.25
1966 1.26 1.38 1.86 1.56
1967 1.53 1.59 1.83 1.86
1968 1.53 2.07 2.34 2.25
1969 2.16 2.43 2.70 2.25
1970 2.79 3.42 3.69 3.60
1971 3.60 4.32 4.32 4.05
1972 4.86 5.04 5.04 4.41
1973 5.58 5.85 6.57 5.31
1974 6.03 6.39 6.93 5.85
1975 6.93 7.74 7.83 6.12
1976 7.74 8.91 8.28 6.84
1977 9.54 10.26 9.54 8.73
1978 11.88 12.06 12.15 8.91
1979 14.04 12.96 14.85 9.99
1980 16.20 14.67 16.02 11.61

Now, select the best plot from those illustrated above and plot this data. Hint: this looks
like a time series to me…

2.4 Scatter plots, correlation, and regression

Correlation quantifies the strength and direction of the relationship between two variables,
helping assess how they move together (or in opposite directions). Any potential such
relationship can be visualized using a scatter plot as introduced in Section 2.3.

2.4.1 Linear correlation

Linear correlation measures the strength and direction of the linear relationship between
two variables, often represented by the correlation coefficient (r). The p-value associated

30

with this coefficient assesses the statistical significance of the correlation, helping determine
whether the observed relationship is likely due to chance or represents a real association.
Let’ consider the built-in dataset mtcars which contains several aspects and performance
of several 1973 - 1974 model cars. This code loads the dataset and displays several of its
entries.

mtcars:
Load data from the built-in dataset into a variable named mtcars
data("mtcars")

mtcars

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

31

Let’s see if there is a linear relationship between miles per gallon (MPG) and the engine horse
powerr (HP) using the R command cor.test() and storing the linear correlation coef-
ficient (r) and P-value in the variable mpgvshp. Notice that mtcars$mpg extracts just the
column of MPG from the dataset and similarly for mtcars$hp. The r-value can be found by
calling mpgvshp$estimate, whereas, the P-value can be found by calling mpgvshp$p.value.
Finally, the confidence interval for the estimated 𝑟 is found using the mpgvshp$conf.int
command.

Calculate the correlation between MPG and HP
mpgvshp <- cor.test(mtcars$mpg, mtcars$hp)
mpgvshp

Pearson's product-moment correlation

data: mtcars$mpg and mtcars$hp
t = -6.7424, df = 30, p-value = 1.788e-07
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.8852686 -0.5860994

sample estimates:
cor

-0.7761684

Let's view the r- and P-values and critical r-value range
cat("r:", mpgvshp$estimate, "\n")

r: -0.7761684

cat("P-value:", mpgvshp$p.value, "\n")

P-value: 1.787835e-07

cat("Confidence interval for r: (", mpgvshp$conf.int[1], ", ", mpgvshp$conf.int[2], ")")

Confidence interval for r: (-0.8852686 , -0.5860994)

A negative r-value indicates that if a linear relationship is present then the relationship is
negative, i.e., increasing the MPG decreases the HP. Having the absolute value of the r-value
close to one indicates a linear relationship. Notice that the confidence interval for 𝑟 is away
from zero, supporting the conclusion that a negative linear relationship is present.

32

A P-value of less than 0.05 suggests that the sample results are not likely to occur merely by
chance when there is no linear correlation. Thus, a small P-value such as the one we received
here supports a conclusion that there is a linear correlation between MPG and HP.

Now, let’s use a scatter plot to visualize the relationship.

Create a scatter plot to visualize the relationship
plot(mtcars$mpg, mtcars$hp, xlab = "Miles per Gallon (MPG)", ylab =

"Horsepower (HP)", main = "Plot of MPG vs. HP")

10 15 20 25 30

50
15

0
25

0

Plot of MPG vs. HP

Miles per Gallon (MPG)

H
or

se
po

w
er

 (
H

P
)

2.4.2 Regression line

Regression analyzes and models the relationship between variables, allowing us to predict
one variable based on the values of others. Let’s return to our MPG vs HP example. We
will use the R command lm() to create a linear model (or linear regression) for this data.
We then use our scatter plot created previously to plot the model prediction alongside the
actual data points. In this case, the R command abline() adds the regression line stored
in model with the color being specified by the attribute col.

Create a linear regression model
model <- lm(hp ~ mpg, data = mtcars)

Create a scatter plot to visualize the relationship
plot(mtcars$mpg, mtcars$hp, xlab = "Miles per Gallon (MPG)", ylab = "Horsepower (HP)",

main = "Plot of MPG vs. HP")

33

Add the regression line to the plot
abline(model, col = "blue")

10 15 20 25 30

50
15

0
25

0

Plot of MPG vs. HP

Miles per Gallon (MPG)

H
or

se
po

w
er

 (
H

P
)

2.4.3 Let’s put it all together!

Using the same mtcars dataset, use what you have learned above to determine if there is
a linear correlation between the weight of a car in the set versus the engine’s horse power.
The following code will walk you through the process. We begin with a visualization of the
data using a scatter plot.

Create a scatter plot to visualize the relationship
plot(mtcars$wt, mtcars$hp, xlab = "Weight (WT)", ylab = "Horsepower (HP)",

main = "Plot of WT vs. HP")

34

2 3 4 5

50
15

0
25

0
Plot of WT vs. HP

Weight (WT)

H
or

se
po

w
er

 (
H

P
)

Now, let’s determine if there is a linear relationship between car weight mtcars$wt and
engine horsepower mtcars$hp.

Calculate the correlation between MPG and HP
wtvshp <- cor.test(mtcars$wt, mtcars$hp)

wtvshp

Pearson's product-moment correlation

data: mtcars$wt and mtcars$hp
t = 4.7957, df = 30, p-value = 4.146e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4025113 0.8192573

sample estimates:
cor

0.6587479

Let's view the r- and P-values and critical r-value range
cat("r:", wtvshp$estimate, "\n")

r: 0.6587479

35

cat("P-value:", wtvshp$p.value, "\n")

P-value: 4.145827e-05

cat("Confidence interval for r: (", wtvshp$conf.int[1], ", ",
wtvshp$conf.int[2], ")")

Confidence interval for r: (0.4025113 , 0.8192573)

What can we conclude about a possible linear relationship between car weight and horse-
power? Is this relationship supported? Finally, let’s visualize the regression line and data
together.

Create a linear regression model
model2 <- lm(hp ~ wt, data = mtcars)

Create a scatter plot to visualize the relationship
plot(mtcars$wt, mtcars$hp, xlab = "Weight (WT)", ylab = "Horsepower (HP)",

main = "Plot of WT vs. HP")

Add the regression line to the plot
abline(model2, col = "red")

2 3 4 5

50
15

0
25

0

Plot of WT vs. HP

Weight (WT)

H
or

se
po

w
er

 (
H

P
)

What about causation? Does having a heavier car make it have higher or lower horse-
power?

36

3 DESCRIBING, EXPLORING, and
COMPUTING DATA

r-function Description
mean(x) Calculate the mean of vector x
median(x) Calculate the median of vector x
Mode(x) Calculate the mode of vector x. Need to install the package

DescTools
max(x) Calculate the maximum of vector x
min(x) Calculate the minimum of vector x
range(x) Calculate the range of vector x. range(x) returns a vector

c(min(x),max(x))
sd, var Calculate the sample standard deviation, use denominator

n-1. To remove a NA value, pass the argument na.rm=TRUE.
To calculate a population variance 𝜎2(𝑥), use the formula
𝜎2(𝑥) = 𝑣𝑎𝑟(𝑥) ∗ (𝑙𝑒𝑛𝑔𝑡ℎ(𝑥) − 1)/𝑙𝑒𝑛𝑔𝑡ℎ(𝑥), and 𝜎 =

√
𝜎2.

scale(x) Convert data vector x into 𝑧-scores.
quantile(x,probs) Calculate the percentiles at the indicated probability values

probs.
summary(x) Give a 5-number (min, Q1, median, mean, Q3, max)

summary of the data vector x
boxplot(x) Plot the boxplot of the data vector x
hist(x) Plot histogram of the 1-D data x. Optional arguments:

main: main title; xlab: x-label; ylab: y-label; col: color.
Pass freq=FALSE for a relative frequency histogram.

rnorm(n,mean,sd) Generate n random values of standard normal distribution
with the given mean and sd.

runif(n, min, max) Generate n uniformly distributed random values between
min (inclusive) and max (inclusive).

rexp(n,r) Generate n exponentially distributed random values with
rate r at which events occurs on average

3.1 Measures of center

Measures of center, such as the mean and median, provide a central value that summarizes
a dataset, helping to understand its typical or central tendency, which is crucial for making

37

data-driven decisions and drawing inferences.

3.1.1 Mean

The mean, also known as the average, is a measure of center in a dataset that calculates
the sum of all values divided by the total number of values, providing a representative value
for the dataset. We will employ the R command mean() to calculate the mean of several
datasets.

Load test data into a variable names scores
scores <- c(95, 90, 85, 85, 87, 74, 75, 64, 85, 84, 87, 15, 20, 75, 75, 90, 75)
Calculate mean of scores and then store it in the variable meanScore
meanScore <- mean(scores)

print out the answer
cat("Mean test score is: ", meanScore, "\n")

Mean test score is: 74.17647

The mean is very sensitive to outliers. Let’s see what happens when we take the same scores
list and add some really low grades to the list.

Previous test scores with a several much lower scores added
scores2 <- c(95, 90, 85, 85, 87, 74, 75, 64, 85, 84, 87, 15, 20, 75, 75, 90, 75,

2, 1, 5, 3)

Calculate mean of scores2 and then store it in the variable meanScore2
meanScore2 <- mean(scores2)

print out the answer
cat("Mean test score is from original is: ", meanScore, ", while from scores2

is: ", meanScore2)

Mean test score is from original is: 74.17647 , while from scores2
is: 60.57143

This sensitivity to outliers is the notion of resistance. The mean is not a resistant measure
of middle.

38

3.1.2 Median

The median is a measure of center in a dataset that represents the middle value when all
values are ordered, and it is resistant to extreme outliers, making it a robust statistic for
summarizing data. Let’s return to the scores data and see the difference between mean and
median of the two datasets scores and scores2 using the R commands median().

Calculate median of scores and then store it in the variable medianScore
medianScore <- median(scores)

Calculate median of scores2 and then store it in the variable medianScore2
medianScore2 <- median(scores2)

print out the answer
cat("Mean test score from original is: ", meanScore, ", while from scores2 is: ",

meanScore2, "\n\n")

Mean test score from original is: 74.17647 , while from scores2 is: 60.57143

cat("Median test score from original is: ", medianScore, ", while from scores2 is: ", medianScore2, "\n")

Median test score from original is: 84 , while from scores2 is: 75

3.1.3 Mode

The mode is a statistical measure that represents the value or values that occur most fre-
quently in a dataset, making it a useful indicator of the most common observation(s); how-
ever, it is not necessarily resistant to outliers, meaning extreme values can heavily influence
the mode. There is no bulit-in R command for mode, so we will have to employ the package
DescTools.

The first time you run this code, you will need to install the following package.
After this initial run, you can skip running this code:

Installs the package 'DescTools'. ONLY RUN THIS CODE ONCE!
install.packages('DescTools')

Once this package is installed, then we can load the library DescTools in order to use the
R command Mode().

39

Load the DescTools package
library(DescTools)

Calculate the mode of both scores and scores2 using the Mode() method

Calculate Mode of scores and then store it in the variable modeScore
modeScore <- Mode(scores)

Calculate median of scores2 and then store it in the variable modeScore2
modeScore2 <- Mode(scores2)

print out the answer
cat("Mode test score from original is: ", modeScore, ", while from scores2 is: ",

modeScore2, "\n")

Mode test score from original is: 75 , while from scores2 is: 75

3.1.4 Midrange

The midrange is a measure of center in a dataset that represents the arithmetic mean of
the maximum and minimum values, and it is not resistant to extreme outliers, making it
sensitive to extreme values. There is no built-in R command for midrange, thus we will use
the following code to calculate the midrange of our scores and scores2 data.

Calculate miderange of scores and then store it in the variable midrangeScore
midrangeScore <- (max(scores) - min(scores)) / 2

Calculate midrange of scores2 and then store it in the variable midrangeScore2
midrangeScore2 <- (max(scores2) - min(scores2)) / 2

print out the answer
cat("Midrange test score from original is: ", midrangeScore, ",

while from scores2 is: ", midrangeScore2, "\n")

Midrange test score from original is: 40 ,
while from scores2 is: 47

3.1.5 Let’s put it all togeher!

Consider the built-in dataset mtcars which contains several aspects and performance of
several 1973 - 1974 model cars which we studied in Section 2.4. We will calculate mean,
meidan, mode, and midrange of the miles per gallon of the cars in the dataset. using the

40

R commands illustrated in the previous sections, as well as compute the so-called 5-number
summary using the R command summary(). First, let’s plot a histogram of the data.

Extract the MPG data and store it into the variable carsMPG
carsMPG <- mtcars$mpg

Generate a histogram of the MPG data from mtcars
hist(carsMPG, main = "MPG for cars", xlab = "MPG")

MPG for cars

MPG

F
re

qu
en

cy

10 15 20 25 30 35

0
2

4
6

8
12

Calculate mean of MPG data and then store it in the variable meanMPG
meanMPG <- round(mean(carsMPG), digits = 2)

Calculate median of MPG data and then store it in the variable medianMPG
medianMPG <- median(carsMPG)

Calculate Mode of scores and then store it in the variable modeMPG
modeMPG <- Mode(carsMPG)

Calculate miderange of scores and then store it in the variable midrangeMPG
midrangeMPG <- (max(carsMPG) - min(carsMPG)) / 2

print out the answer
cat("Mean \t Median \t \t \t Mode \t \t \t Midrange \n")

Mean Median Mode Midrange

41

cat(meanMPG, " \t ", medianMPG, " \t ", modeMPG, " \t ", midrangeMPG, "\n")

20.09 19.2 10.4 15.2 19.2 21 21.4 22.8 30.4 11.75

Give the 5-number summary for MPG data
summary(carsMPG)

Min. 1st Qu. Median Mean 3rd Qu. Max.
10.40 15.43 19.20 20.09 22.80 33.90

Notice that there are 7 elements in the mode. That’s because there are 7 most frequent
elements, each appear twice. Which of these central measures best describes what you
visually see as the “center” of data using the histogram? What does it “mean” that the mean
and median are close to each other? Does the 5-number summary give us any additional
information regarding the measure of “center” in the data?

3.2 Measures of variation

Measures of variation, such as the range, variance, and standard deviation, provide insights
into the spread or dispersion of data points within a dataset, helping us understand how
much individual values deviate from the central tendency measures like the mean or median.
These measures are essential because they quantify the degree of variability in data, allowing
us to assess data quality, make more accurate predictions, and draw meaningful conclusions
in statistical analysis.

3.2.1 Visualizing variation

Histograms can visually represent the variation in a dataset by displaying the distribution
of values across different bins or intervals, highlighting the frequency and pattern of data
points, and revealing the shape and spread of the distribution. Let’s compare histograms
for our scores2 and carsMPG datasets.

Generate a histogram of the MPG data from scores2
hist(scores2, main = "Test scores", xlab = "Score")

42

Test scores

Score

F
re

qu
en

cy

0 20 40 60 80 100

0
2

4
6

8

Generate a histogram of the MPG data from mtcars
hist(carsMPG, main = "MPG for cars", xlab = "MPG")

MPG for cars

MPG

F
re

qu
en

cy

10 15 20 25 30 35

0
2

4
6

8
12

43

3.2.2 Range

The range is a measure of variation that represents the difference between the maximum
and minimum values in a dataset, but it is not resistant to outliers, meaning extreme values
can substantially affect the range. Let’s compare the ranges of our carsMPG and scores2
datasets using the R command range().

Calculate range of scores2 and then store it in the variable rangeScore2
rangeScore2 <- range(scores2)

Calculate range of carsMPG and then store it in the variable rangeMPG
rangeMPG <- range(carsMPG)

print out the answer
cat("Range for test scores from scores2 is: (", rangeScore2[1], ", ",

rangeScore2[2], ") \n")

Range for test scores from scores2 is: (1 , 95)

cat("Range for MPG from carsMPG is: (", rangeMPG[1], ", ", rangeMPG[2], ") \n")

Range for MPG from carsMPG is: (10.4 , 33.9)

3.2.3 Standard deviation

Standard deviation is a measure of the dispersion or spread of data points in a dataset, with
a higher value indicating greater variability, and it’s calculated differently for populations
(𝜎) and samples (s), where the sample standard deviation (s) is often used for practical
data analysis. However, standard deviation is not resistant to extreme outliers, making
it sensitive to the influence of extreme values on its magnitude. There is a built-in R
command for sample standard deviation, but no such command for population standard
deviation. Recall our test scores dataset scores2. Since this data represents the entire
population (every student in the class), we will calculate population standard deviation
for that dataset. However, the MPG data in carsMPG is only a sample of all the cars on
the market in 1973 - 1974. Thus, we will employ the R command sd() to calculate sample
standard deviation.

Calculate population SD of scores2 and then store it in the variable popSDScore2
popSDScore2 <- sqrt(var(scores2) * (length(scores2) - 1) / length(scores2))

Calculate sample SD of carsMPG and then store it in the variable samSDMPG
samSDMPG <- sd(carsMPG)

44

Print out the answer
cat("Population standard deviation for test scores from scores2 is: ",

popSDScore2, "\n\n")

Population standard deviation for test scores from scores2 is: 34.35331

cat("Sample standard deviation for MPG from carsMPG is: ", samSDMPG, " \n")

Sample standard deviation for MPG from carsMPG is: 6.026948

3.2.4 Variance

Variance measures the average of the squared differences between each data point and the
mean of a dataset, providing a measure of data dispersion, but it is not resistant to extreme
outliers, making it sensitive to the influence of extreme values on its magnitude. Variance
is calculated differently for populations (𝜎2) and samples (𝑠2), with the sample variance
(𝑠2) being used for practical data analysis to account for bias when working with a subset
of a larger population. Let’s compare population variance for our scores2 dataset and
sample variance for our carsMPG dataset. As with standard deviation, although there is a
built-in R command for sample variance, there is not a built-in command for population
variance, so we will have to improvise.

Calculate population variance of scores2 and then store it in the variable
popVarScore2
popVarScore2 <- var(scores2) * (length(scores2) - 1) / length(scores2)

Calculate sample variance of carsMPG and then store it in the variable samSDMPG
samVarMPG <- var(carsMPG)

Print out the answer
cat("Population variance for test scores from scores2 is: ", popVarScore2, "\n\n")

Population variance for test scores from scores2 is: 1180.15

cat("Sample variance for MPG from carsMPG is: ", samVarMPG, " \n")

Sample variance for MPG from carsMPG is: 36.3241

45

3.2.5 Let’s put it all togeher!

Consider the built-in dataset mtcars which contains several aspects and performance of
several 1973 - 1974 model cars which we studied in Section 2.4. We will first calculate mean
and median of the horse power (HP) of the cars in the dataset. To calculate measures of
variation, we note that since this is just a sample of all possible cars on the market during
1973 - 1974, we will employ sample variance and standard deviation using the R commands
illustrated in the previous sections, along with a histogram to visually explore the data.

Extract the HP data and store it into the variable carsHP
carsHP <- mtcars$hp

Generate a histogram of the HP data from mtcars
hist(carsHP, main = "Horse power (HP) for cars", xlab = "HP")

Horse power (HP) for cars

HP

F
re

qu
en

cy

50 100 150 200 250 300 350

0
2

4
6

8
10

Calculate mean of HP data and then store it in the variable meanHP
meanHP <- round(mean(carsHP), digits = 2)

Calculate median of HP data and then store it in the variable medianHP
medianHP <- median(carsHP)

Calculate variance of HP data and then store it in the variable varHP
varHP <- var(carsHP)

Calculate standard deviation of HP and then store it in the variable midrangeHP

46

sdHP <- sd(carsHP)

print out the answer
cat("Mean \t Median \t variance \t Standard Deviation \n")

Mean Median variance Standard Deviation

cat(meanHP, " \t ", medianHP, " \t ", varHP, " \t ", sdHP, "\n")

146.69 123 4700.867 68.56287

Now, compare the MPG and HP data from the mtcars dataset. For MPG, we calculated a
standard deviation around 36 and for HP of around 69. Does this mean that the MPG data
is less spread out than the HP data? Is your answer to this question consistent with the
histograms we produced? Can we compare standard deviations from two totally different
datasets in a meaningful way?

3.3 Measures of relative standing and boxplots

Measures of relative standing, such as percentiles and quartiles, provide information about
where specific data points fall within a dataset, offering insights into the relative position of
values. Boxplots are graphical representations that display the distribution of data, highlight-
ing the median, quartiles, and potential outliers, making them valuable tools for comparing
different datasets by visually assessing their central tendency, spread, and skewness.

3.3.1 z-Scores

Z-scores, also known as standard scores, standardize individual data points by expressing
how many standard deviations they are from the mean, enabling meaningful comparisons
and assessments of data points’ relative positions within a distribution, regardless of the
original scale of the data. Z-scores are valuable for identifying outliers, understanding data
distributions, and making statistical inferences, as they provide a common framework for
measuring deviations from the mean across different datasets. Let’s explore z-scores using
the built-in dataset mtcars which contains several aspects and performance of several 1973 -
1974 model cars which we studied in the last section. Particularly, let’s employ the built-in
R command scale() to convert our dataset to z-scores which can be plotted in a histogram.
Once the two datasets (MPG and HP) are normalized, we will be able to get a better picture
of their spread away from the respective means.

47

Transform the MPG data to z-scores and store the new data in zcarsHP
zcarsHP <- scale(carsHP)

Transform the MPG data to z-scores and store the new data in zcarsHP
zcarsMPG <- scale(carsMPG)

Generate a histogram of the transformed HP data from mtcars
hist(zcarsHP, main = "Normalized horse power (HP) for cars", xlab = "Z-score")

Normalized horse power (HP) for cars

Z−score

F
re

qu
en

cy

−1 0 1 2 3

0
2

4
6

8

Generate a histogram of the transformed MPG data from mtcars
hist(zcarsMPG, main = "Normalized miles per gallon (MPG) for cars", xlab = "Z-score")

48

Normalized miles per gallon (MPG) for cars

Z−score

F
re

qu
en

cy

−2 −1 0 1 2

0
2

4
6

8

Visually, the normalized MPG data is more concentrated around the transformed mean of
0, while the HP data is much more spread out.

Any data point that has a z-score of less than -2 or higher than 2 is considered to be
significantly lower or higher, respectively. Let’s view our transformed data sets MPG and
HP to identify data points that are significantly higher.

Find MPG data points with z-scores higher than 2
outliersMPG <- carsMPG[zcarsMPG > 2]

Find HP data points with z-scores higher than 2
outliersHP <- carsHP[zcarsHP > 2]

Print the data points with z-scores higher than 2
cat("MPG Data with z-scores higher than 2:", outliersMPG, "\n")

MPG Data with z-scores higher than 2: 32.4 33.9

cat("HP Data with z-scores higher than 2:", outliersHP, "\n")

HP Data with z-scores higher than 2: 335

49

3.3.2 Percentiles

Percentiles are statistical measures that divide a dataset into 100 equal parts, helping identify
values below which a certain percentage of the data falls and enabling comparisons of data
points in a ranked order. Let’s use the built-in R command quantile()with the MPG
data from the previous example to compute the 10th, 50th, and 90th percentiles for that
dataset.

Compute 10th, 50th, and 90th percentiles for the MPG dataset
percentiles <- c(0.1, 0.5, 0.9)
percentilesMPG <- quantile(carsMPG, probs = percentiles)

Print the data points with z-scores higher than 2
percentilesMPG

10% 50% 90%
14.34 19.20 30.09

Notice that both of our significantly larger MPG values (i.e., 32.4 and 33.9) both fall above
the 90th percentile of the dataset.

3.3.3 Quartiles & the 5-number summary

Quartiles are statistical measures that divide a dataset into four equal parts, with three
quartiles (Q1, Q2, Q3) providing insights into the data’s spread and central tendencies; they
are resistant to outliers, making them robust tools for summarizing data. The 5-number
summary is a set of five statistics (minimum, Q1, median, Q3, maximum) that provide a
concise description of a dataset’s central tendencies and spread. Keeping with our MPG
dataset, we will employ the R command summary() to give the 5-number summary (which
will include Q1, Q2 (also known as the median), & Q3).

Compute 5-number summary for MPG data and store it in fiveMPG
fiveMPG <- summary(carsMPG)

Display the 5-number summary
fiveMPG

Min. 1st Qu. Median Mean 3rd Qu. Max.
10.40 15.43 19.20 20.09 22.80 33.90

50

3.3.4 Boxplot

A boxplot, also known as a box-and-whisker plot, is a graphical representation of the five-
number summary, displaying the median, quartiles, and potential outliers in a dataset,
making it a valuable tool for visualizing the distribution and spread of data. We will employ
the R command boxplot() to compare the MPG and HP datasets from previous examples.
This R command actually creates a modified boxplot by default. Recall the only difference
between a regular boxplot and a modified box plot is that data which falls outside of the
interquartile range is denoted as an outlier and plotted as an individual point on the graph.

Generate boxplot for MPG
boxplot(carsMPG, main = "Boxplot of MPG", horizontal = TRUE, xlab = "MPG")

10 15 20 25 30

Boxplot of MPG

MPG

Generate boxplot for HP
boxplot(carsHP, main = "Boxplot of HP", horizontal = TRUE, xlab = "HP")

51

50 100 150 200 250 300

Boxplot of HP

HP

Let’s also compare the boxplots of each of the four datasets for which we explored normal,
skewed right, skewed left, and uniform distributions.

Create histogram/boxplot of normal data
Sample normal distribution
normalData <- rnorm(100)
hist(normalData, main = "Normal distribution")

52

Normal distribution

normalData

F
re

qu
en

cy

−2 −1 0 1 2 3

0
5

10
20

boxplot(normalData, main = "Normal Distribution", horizontal = TRUE)

−2 −1 0 1 2 3

Normal Distribution

Create histogram/boxplot of uniform data
Sample uniform distribution using the command runif

53

uniformData <- runif(50000, min = 10, max = 11)
hist(uniformData, main = "Uniform distribution")

Uniform distribution

uniformData

F
re

qu
en

cy

10.0 10.2 10.4 10.6 10.8 11.0

0
10

00
20

00

boxplot(uniformData, main = "Uniform Distribution", horizontal = TRUE)

10.0 10.2 10.4 10.6 10.8 11.0

Uniform Distribution

54

Sample of a distribution that is skewed right
skewedRightData <- rexp(1000, 0.4)
Create histogram/boxplot of skewed right data
hist(skewedRightData, main = "Distribution that is skewed right")

Distribution that is skewed right

skewedRightData

F
re

qu
en

cy

0 5 10 15 20

0
20

0
40

0

boxplot(skewedRightData, main = "Distribution that is skewed right",
horizontal = TRUE)

55

0 5 10 15 20

Distribution that is skewed right

Sample of a distribution that is skewed left
skewedLeftData <- 1 - rexp(1000, 0.2)
Create histogram/boxplot of skewed left data
hist(skewedLeftData, main = "Distribution that is skewed left")

Distribution that is skewed left

skewedLeftData

F
re

qu
en

cy

−30 −20 −10 0

0
20

0
40

0

56

boxplot(skewedLeftData, main = "Distribution that is skewed left", horizontal = TRUE)

−30 −25 −20 −15 −10 −5 0

Distribution that is skewed left

Notice there are a lot of outliers shown on the skewed left & right data. These points are
what is causing the long tails on both histograms.

3.3.5 Let’s put it all together!

We will use everything we have learned so far in this section to explore the differences between
our two test score datasets, i.e., scores and scores2. These are fictional collections of test
scores with scores2 containing several more extremely low test scores than scores. Our
first task is to transform the datasets to z-scores and visualize the scaled datasets with a
histrogram.

Transform the scores data to z-scores and store the new data in zscores
zscores <- scale(scores)

Transform the scorres2 data to z-scores and store the new data in zscores2
zscores2 <- scale(scores2)

Generate a histogram of the transformed from scores
hist(zscores, main = "Normalized test scores #1", xlab = "Z-score")

57

Normalized test scores #1

Z−score

F
re

qu
en

cy

−3 −2 −1 0 1

0
2

4
6

8

Generate a histogram of the transformed from scores2
hist(zscores2, main = "Normalized test scores #2", xlab = "Z-score")

Normalized test scores #2

Z−score

F
re

qu
en

cy

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8

Out of the two fictional classes, are there any test scores that are significantly high or low?
What can we conclude about those scores? Now, let’s compute the 5-number summary for
each group of test scores.

58

Compute 5-number summary for scores
summary(scores)

Min. 1st Qu. Median Mean 3rd Qu. Max.
15.00 75.00 84.00 74.18 87.00 95.00

Compute 5-number summary for scores2
summary(scores2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 20.00 75.00 60.57 85.00 95.00

Finally, let’s create boxplots for both datasets and show them on the same plot window for
comparison.

Generate boxplot for both
boxplot(scores, main = "Boxplot of test scores #1", horizontal = TRUE,

xlab = "Scores")

20 40 60 80

Boxplot of test scores #1

Scores

boxplot(scores2, main = "Boxplot of test scores #2", horizontal = TRUE,
xlab = "Scores")

59

0 20 40 60 80

Boxplot of test scores #2

Scores

What conclusions can we draw regarding the two datasets? If these were two real classes, how
would the boxplots help the teacher understand grade performance for the entire class?

60

4 PROBABILITY

r-function Description
length Compute the length of a vector
mean Compute the mean
sum Compute the sum
cat Concatenate strings and variable values for formatted print
sample(x, size,
replace=FALSE),
prob=NULL)

Randomly sample x uniformly with the number of samples =
size. If prob is provided, length(prob)=length(x), and prob
should sum to 1.

table Tabulate the frequency counts of distinct values.
barplot(x) Plot barplot of the 1-D data x: arguments: main: main title;

xlab: x-label; ylab: y-label; col: color
factorial(n) n!
permutations(n,m),
combinations(n,m)

List all permutations (combinations) of n objects taken m at a
time (n>m). Accepts an optional argument v for indicating the
set of permuted n elements.

nrow Find the number of rows in a matrix, dataframe or other
rectangular data structure

4.1 Basic concepts of probability

In this code:

• We calculate the probability of drawing a Heart from a deck of four suits (sample
space).

• We simulate random events such as a coin toss and rolling a six-sided die.

• We simulate multiple die rolls and visualize the resulting probability distribution.

• We calculate the probability of a specific outcome (such as, rolling a 3).

Set a seed for reproducibility
set.seed(42)

Define a sample space (e.g., a deck of cards)
sample_space <- c("Hearts", "Diamonds", "Clubs", "Spades")

61

Calculate the probability of drawing a Heart from the sample space
probability_heart <- sum(sample_space == "Hearts") / length(sample_space)

cat("Probability of drawing a Heart:", probability_heart, "\n")

Probability of drawing a Heart: 0.25

Simulate a random event (e.g., coin toss)
coin_toss <- sample(c("Heads", "Tails"), size = 1)

cat("Result of a random coin toss:", coin_toss, "\n")

Result of a random coin toss: Heads

Simulate rolling a six-sided die
die_roll <- sample(1:6, size = 1)

cat("Result of rolling a die:", die_roll, "\n")

Result of rolling a die: 5

Simulate multiple die rolls and visualize the probability distribution
num_rolls <- 1000
die_rolls <- sample(1:6, size = num_rolls, replace = TRUE)

Calculate the relative frequencies for each outcome
relative_frequencies <- table(die_rolls) / num_rolls
relative_frequencies

die_rolls
1 2 3 4 5 6

0.171 0.192 0.164 0.157 0.154 0.162

Calculate the probability of rolling a 3
probability_roll_3 <- relative_frequencies[3]

cat("Probability of rolling a 3:", probability_roll_3, "\n")

Probability of rolling a 3: 0.164

62

Visualize the probability distribution with a bar plot
barplot(relative_frequencies, main = "Probability Distribution of Die Rolls",

xlab = "Die Face", ylab = "Probability", col = "lightblue")

1 2 3 4 5 6

Probability Distribution of Die Rolls

Die Face

P
ro

ba
bi

lit
y

0.
00

0.
10

4.2 Addition rule and multiplication rule

4.3 Complements, conditional probability, and Bayes’ theorem

4.4 Counting

4.4.1 Calculate factorial 𝑛!

R provides a built-in function to calculate factorial. You can use the factorial() function
in R to compute the factorial of a number.

n <- 5
factorial_result <- factorial(n)
cat("Factorial of", n, "is", factorial_result, "\n")

Factorial of 5 is 120

63

Replace the value of n with the number for which you want to calculate the factorial, and
the factorial() function will return the result.

4.4.2 Find all permutations and the number of all permutations

To do this, we can use the permutations function from the gtools package. For any list
of size n, this function computes all the different permutations 𝑃(𝑛, 𝑟) we can get when we
select r items. Here are all the ways we can choose two numbers from a list consisting of
1,2,3:

library(gtools)
permutations(3, 2)

[,1] [,2]
[1,] 1 2
[2,] 1 3
[3,] 2 1
[4,] 2 3
[5,] 3 1
[6,] 3 2

Notice that the order matters here: 3,1 is different than 1,3. Also, note that (1,1), (2,2),
and (3,3) do not appear because once we pick a number, it can’t appear again.

To get the actual number of permutations, one can use the R-function nrow() to find the
total number of rows in the output of permutations:

library(gtools)
nrow(permutations(3,2))

[1] 6

Alternatively, we can add a vector v to indicate the objects that a permutation is performed
on. If you want to see five random seven digit phone numbers out of all possible phone
numbers (without repeats), you can type:

all_phone_numbers <- permutations(10, 7, v = 0:9) # Use digits 0, 1, ..., 9
n <- nrow(all_phone_numbers)
cat("total number of phone numbers n = ", n, "\n")

total number of phone numbers n = 604800

64

Randomly sample 5 phone numbers
index <- sample(n, 5)
all_phone_numbers[index,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 8 9 5 1 6 0 3
[2,] 4 0 2 3 5 7 8
[3,] 0 4 6 1 3 2 7
[4,] 5 8 2 6 4 0 3
[5,] 7 5 1 0 9 2 6

The code all_phone_numbers[index,] extract the matrix all_phone_numbers with rows
indexed by index, and all columns because no specific column index is given after ,.
Instead of using the numbers 1 through 10, the default, it uses what we provided through v:
the digits 0 through 9.

4.4.3 Find all combinations and the number of all combinations

How about if the order doesn’t matter? For example, in Blackjack if you get an Ace and a
face card in the first draw, it is called a Natural 21 and you win automatically. If we wanted
to compute the probability of this happening, we would enumerate the combinations, not
the permutations, since the order of drawn cards does not matter.

combinations(3,2)

[,1] [,2]
[1,] 1 2
[2,] 1 3
[3,] 2 3

In the second line, the outcome does not include (2,1) because (1,2) already was enumerated.
The same applies to (3,1) and (3,2).

To get the actual number of combinations, one can do

nrow(combinations(3,2))

[1] 3

(optional) Of course, one can define a R-function to calculate a permutation number.

65

Function to calculate permutation (nPr)
nPr <- function(n, r) {

if (n < r) {
return(0)

} else {
return(factorial(n) / factorial(n - r))

}
}
nPr(3,2)

[1] 6

Function to calculate combination (nCr)
nCr <- function(n, r) {

if (n < r) {
return(0)

} else {
return(factorial(n) / (factorial(r) * factorial(n - r)))

}
}
nCr(3,2)

[1] 3

66

5 DISCRETE PROBABILITY
DISTRIBUTION

r-function Description
mean Calculate the mean
sd, var Calculate the sample standard deviation, use denominator n-1.

To remove a NA value, pass the argument na.rm=TRUE.
weighted.mean(x,wt) Calculate a weighted mean (expectation)
median(x) Calculate the median
rbinom(s,size=n,
prob=p)

Generate s random binomial-distributed random values with n
trials and success probability p

dbinom(x,size=n,
prob=p)

Calculate the density (probability) of a binomial distribution
with x successes in n trials given the success probability p

pbinom(q,size=n,
prob=p)

Calculate the cumulative probability of a binomial distribution
less than or equal to q successes in n trials given the success
probability p. To calculate the probability greater than q, pass
an argument lower.tail=FALSE.

hist(x) Plot histogram of the 1-D data x: arguments: main: main
title; xlab: x-label; ylab: y-label; col: color. Pass
freq=FALSE for a relative frequency histogram.

rpois(n, lambda) Generate n random Poisson-distributed values with mean rate
of events lambda

dpois(x, lambda) Calculate the density (probability) of getting exactly x events
given a Poisson-distribution with mean rate of events lambda

ppois(x, lambda) Calculate the cumulative probability of less than or equal to x
given a Poisson-distribution with mean rate of events lambda

5.1 Probability distribution

5.1.1 Calculate sample mean, standard deviation and variance with equal
probability

You can use R to calculate the sample mean, standard deviation, and variance of a given
data set using built-in functions like mean(), sd(), and var(). Here’s some sample R code
to do that:

67

Sample data set
data_set <- c(12, 15, 18, 21, 24, 27, 30, 33, 36, 39)

Calculate the mean
mean_value <- mean(data_set)
cat("Mean:", mean_value, "\n")

Mean: 25.5

Calculate the sample standard deviation
std_deviation <- sd(data_set)
cat("Standard Deviation:", std_deviation, "\n")

Standard Deviation: 9.082951

Calculate the sample variance
variance <- var(data_set)
cat("Variance:", variance, "\n")

Variance: 82.5

Just replace the data_set vector with your actual data, and this code will compute and print
the mean, standard deviation, and variance for your data set. Note the results calculated
by mean(), sd() and var() assumes each data points occurs with the equal probability 1/𝑛,
where 𝑛 is the number of data points.

5.1.2 Expectation and standard deviation with a given probability distribution

Calculation by definition:

Define the possible values and their corresponding probabilities
values <- c(1, 2, 3, 4, 5)
probabilities <- c(0.1, 0.2, 0.3, 0.2, 0.2)

Calculate the mean (expected value)
mean_value <- sum(values * probabilities)

Print the result
cat("Mean (Expected Value) =", mean_value, "\n")

Mean (Expected Value) = 3.2

68

Or one can use the following built-in function:

wt <- c(5, 5, 4, 1)/15
x <- c(3.7,3.3,3.5,2.8)
xm <- weighted.mean(x, wt)
xm

[1] 3.453333

To calculate the variance of a probability distribution in R, you can use the following codes.

Define the values of the random variable (x_i)
values <- c(1, 2, 3, 4, 5)

Define the probabilities (P(x_i))
probabilities <- c(0.2, 0.3, 0.1, 0.2, 0.2)

Calculate the mean (expected value) of the random variable
mean_x <- sum(values * probabilities)

Calculate the variance using the formula
variance <- sum((values - mean_x)^2 * probabilities)

Print the variance
cat("Variance:", variance, "\n")

Variance: 2.09

5.1.3 Median

Create a sample vector
data_vector <- c(12, 45, 23, 67, 8, 34, 19)

Calculate the median
median_value <- median(data_vector)

Print the median
cat("Median:", median_value, "\n")

Median: 23

69

5.2 Binomial probability distributions

You can generate a data set with a binomial distribution in R using the rbinom() func-
tion. This function simulates random numbers following a binomial distribution. Here’s an
example code to generate a data set with a binomial distribution:

Set the parameters for the binomial distribution
n <- 100 # Number of trials
p <- 0.3 # Probability of success in each trial

Generate a dataset with a binomial distribution
binomial_data <- rbinom(50, size = n, prob = p)

Print the generated dataset
print(binomial_data)

[1] 26 30 34 31 32 30 31 26 31 24 29 34 36 24 29 30 38 37 31 25 26 32 26 33 37
[26] 29 26 29 36 32 30 29 31 36 30 27 32 35 30 24 32 39 21 33 37 25 33 26 25 34

Create a histogram to visualize the data
hist(binomial_data, main = "Binomial Distribution", xlab = "Number of Successes",

ylab = "Frequency", col = "lightblue", border = "black")

Binomial Distribution

Number of Successes

F
re

qu
en

cy

20 25 30 35 40

0
2

4
6

8
10

70

verify the mean =np, and var=npq
Sample mean
mean(binomial_data)

[1] 30.46

Theoretical mean
n*p

[1] 30

Sample variance
var(binomial_data)

[1] 18.13102

Theoretical variance
n*p*(1-p)

[1] 21

You can calculate the probability of specific outcomes in a binomial distribution in R using
the dbinom() function, which calculates the probability mass function (PMF) of the binomial
distribution. Here’s how to use it:

Set the parameters for the binomial distribution
x <- 2 # Number of successes (the outcome you want to calculate the

probability for)
n <- 10 # Number of trials
p <- 0.3 # Probability of success in each trial

Calculate the probability of getting 'x' successes in 'n' trials
probability <- dbinom(x, size = n, prob = p)

Print the calculated probability
cat("Probability of", x, "successes in", n, "trials:", probability, "\n")

Probability of 2 successes in 10 trials: 0.2334744

71

The pbinom() function in R is used to calculate cumulative probabilities for a binomial
distribution. Specifically, it calculates the cumulative probability that a random variable
following a binomial distribution is less than or equal to a specified value. In other words,
it gives you the cumulative distribution function (CDF) for a binomial distribution.

Here’s the basic syntax of the pbinom() function:

pbinom(q, size, prob, lower.tail = TRUE)

q: The value for which you want to calculate the cumulative probability.

size: The number of trials or events in the binomial distribution.

prob: The probability of success in each trial.

lower.tail: A logical parameter that determines whether you want the cumulative proba-
bility for values less than or equal to q (TRUE) or greater than q (FALSE). By default, it is
set to TRUE.

The pbinom() function returns the cumulative probability for the specified value q based on
the given parameters.

Here’s an example of how to use pbinom():

Calculate the cumulative probability that X is less than or equal to 3
cumulative_prob <- pbinom(3, size = 10, prob = 0.3)

Print the cumulative probability
cat("Cumulative Probability:", cumulative_prob, "\n")

Cumulative Probability: 0.6496107

In this example, we’re calculating the cumulative probability that a random variable follow-
ing a binomial distribution with parameters size = 10 and prob = 0.3 is less than or equal
to 3. The result is stored in the cumulative_prob variable and printed to the console.

You can use the pbinom() function to answer questions like “What is the probability of
getting at most 3 successes in 10 trials with a success probability of 0.3?” by specifying the
appropriate values for q, size, and prob.

72

5.3 Poisson probability distributions (Optional)

To generate a data set with a Poisson distribution in R, you can use the rpois() function.
The Poisson distribution is often used to model the number of events occurring in a fixed
interval of time or space when the events happen with a known constant mean rate. Here’s
how you can use rpois():

Set the parameters for the Poisson distribution
lambda <- 3 # Mean (average) rate of events

Generate a dataset with a Poisson distribution
poisson_data <- rpois(n = 100, lambda = lambda)

Print the generated dataset
print(poisson_data)

[1] 3 2 1 7 2 2 2 7 3 4 6 1 4 2 1 2 2 1 6 0 2 1 3 2 5 3 3 1 1 1 3 3 2 4 4 6 2
[38] 2 4 5 5 2 5 1 1 1 2 3 3 2 2 4 2 6 2 4 2 5 4 4 1 3 4 1 2 1 2 3 2 5 0 3 3 5
[75] 7 1 4 3 1 3 6 6 4 5 5 2 3 3 4 4 3 2 4 2 3 4 1 1 0 1

Create a histogram to visualize the data
hist(poisson_data, main = "Poisson Distribution", xlab = "Number of Events",

ylab = "Frequency", col = "lightblue", border = "black")

Poisson Distribution

Number of Events

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
5

10
20

73

#Theoretical mean = lambda
Sample mean
mean(poisson_data)

[1] 2.92

#Theoretical variance = lambda
Sample Variance
var(poisson_data)

[1] 2.84202

To calculate the probability of a specific value occurring in a Poisson distribution in R, you
can use the dpois() function. This function calculates the probability mass function (PMF)
of the Poisson distribution. Here’s how to use it.

Set the parameters for the Poisson distribution
x <- 2 # The specific value for which you want to calculate the probability
lambda <- 3 # Mean (average) rate of events

Calculate the probability of getting exactly 'x' events
probability <- dpois(x, lambda)

Print the calculated probability
cat("Probability of", x, "events:", probability, "\n")

Probability of 2 events: 0.2240418

To calculate the cumulative distribution function (CDF) for a Poisson distribution in R, you
can use the ppois() function. This function calculates the cumulative probability that a
Poisson random variable is less than or equal to a specified value. Here’s how to use it:

Set the parameters for the Poisson distribution
x <- 2 # The specific value to calculate the cumulative probability
lambda <- 3 # Mean (average) rate of events

Calculate the cumulative probability of getting less than or equal to 'x' events
cumulative_prob <- ppois(x, lambda)

Print the calculated cumulative probability
cat("Cumulative Probability of less than or equal to", x, "events:",

cumulative_prob, "\n")

Cumulative Probability of less than or equal to 2 events: 0.4231901

74

6 NORMAL PROBABILITY DISTRIBUTION

r-function Description
rnorm(n,mean,sd) Generate n random values of standard normal distribution with

the given mean and sd.
hist(x) Plot the histogram of the data vector x, pass

probability=TRUE to use density estimate. Pass breaks
argument to specify edges of bins. Eg.: breaks = seq(0,1,
by=0.1). breaks="FD" is a method based on data variability.

seq(start, end,
by=step)

Generate a sequence.

density(x) Estimate the density of the data vector x
lines(x,y) Add a line to an existing plot. y may be omitted depending on x
pnorm(q,mean=0,
sd=1)

Calculate the cumulative probability 𝑃(𝑋 ≤ 𝑞) for a normal
distributed random variable 𝑋 with a given mean and sd.

diff(x) Calculate the first difference of a vector x.
qnorm(p, mean=0,
sd=1)

Calculate the quantile of the normal distribution corresponding
to the probability p (from left-tail).

scale(x,center,
scale)

Scale data x to 𝑧-score using a given mean (center) and
standard deviation (scale). E.g.: scale(x, center=5,
scale=2)

rbinom(s,size=n,
prob=p)

Generate s random binomial-distributed values with n trials and
success probability p

replicate(n, expr) Perform the Monte-Carlo simulation by replicating the
experiment given by the expression expr n times.

6.1 The standard normal distribution

6.1.1 Normal distribution graph (Optional)

set.seed(123) # Set the seed for reproducibility
x <- rnorm(1000, mean = 0, sd = 1) # Generate data for a standard normal distribution

Plot the data with density curve
hist(x, probability = TRUE, col = "lightblue", main = "Standard Normal Distribution")
lines(density(x), col = "red", lwd = 2)

75

Standard Normal Distribution

x

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

6.1.2 Find the probability (area) when z scores are given

Find the area under the curve to the left of a certain value: P(z<1)
pnorm(1, mean = 0, sd = 1)

[1] 0.8413447

Find the area under the curve to the right of a certain value: P(z>1)
1-pnorm(1, mean = 0, sd = 1)

[1] 0.1586553

Find the area under the curve between two values: P(-1<z<1)
diff(pnorm(c(-1, 1), mean = 0, sd = 1))

[1] 0.6826895

6.1.3 Find z scores when the area is given

76

Find the value with a certain area under the curve to its left: critical value
alpha <- 0.05
qnorm(1-alpha, mean = 0, sd = 1) # find the critical Z score.

[1] 1.644854

6.2 Real application of normal distribution

6.2.1 Convert an individual x value to a z-score

x <- 80 # the individual value
mu <- 75 # the mean of the distribution
sigma <- 10 # the standard deviation of the distribution

Calculate z-scores for the individual value using scale()
z_scores <- scale(x, center = mu, scale = sigma)
cat("Z-score:", z_scores, "\n") # print the z-score

Z-score: 0.5

z <- (x - mu) / sigma # find the z-score by using the formula
cat("Z =", z, "\n") # print the z-score

Z = 0.5

6.2.2 Find the probability when x value is given (page 269 Pulse Rates
Question)

x1 <- 60
x2 <- 80
mu <- 69.6
sigma <- 11.3
Find the probability that X is less than 60: P(X<60)
pnorm(x1, mean = mu, sd = sigma)

[1] 0.1977856

77

Find the probability that X is great than 80: P(X>80)
1-pnorm(x2, mean = mu, sd = sigma)

[1] 0.1786939

Find the probability between two values: P(60<X<80)
diff(pnorm(c(x1, x2), mean = mu, sd = sigma))

[1] 0.6235205

6.2.3 Convert a z-score back to x value

z <- 1.96 # the z-score
mu <- 100 # the mean of the distribution
sigma <- 15 # the standard deviation of the distribution
x <- z * sigma + mu # convert the z score to individual x value using formula
cat("X =", x, "\n") # print the individual x value

X = 129.4

6.3 Sampling distributions and estimators (Optional)

6.3.1 General behavior of sampling distribution of sample proportions

Set the seed for reproducibility
set.seed (123)
Generate data
n <- 10 # sample size
p <- 0.5 # population proportion
samples <- replicate(50000, rbinom(1, size = n, prob = p))

Calculate sample proportions of successes
sample_props <- samples / n

Plot the histogram

hist(sample_props, breaks = seq(0, 1, by = 0.1), col = "lightblue",
main = "Sampling Distribution of Sample Proportion")

78

Sampling Distribution of Sample Proportion

sample_props

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

00
10

00
0

6.3.2 General behavior of sampling distribution of sample means

#input the parameter values
mu <- 3.5
sigma <- 1.7
n <- 5
Simulate sampling distribution
sample_means <- replicate(10000, mean(rnorm(n, mu, sigma)))

Create a histogram of the sampling distribution of the sample mean
hist(sample_means, breaks ="FD", main = "Sampling Distribution of Sample Mean",

xlab = "Sample Mean", ylab = "Frequency", col = "lightblue",
border = "black")

79

Sampling Distribution of Sample Mean

Sample Mean

F
re

qu
en

cy

1 2 3 4 5 6

0
20

0
40

0

6.3.3 General behavior of sampling distribution of sample variances

mu <- 4 # True population mean
sigma <- 8 # Population standard deviation
sample_size <- 10 # Sample size
num_samples <- 10000 # Number of samples
Function to calculate sample variance
sample_variance <- function(sample) {

n <- length(sample)
mean_sample <- mean(sample)
sum_squared_deviations <- sum((sample - mean_sample)^2)
return(sum_squared_deviations / (n - 1))

}
Simulate sampling distribution
sample_variances <- replicate(num_samples, sample_variance(rnorm(sample_size,

mu, sigma)))

Create a histogram of the sampling distribution of sample variance
hist(sample_variances, breaks = "FD", freq = FALSE,

main = "Sampling Distribution of Sample Variance",
xlab = "Sample Variance", ylab = "Frequency", col = "lightblue",
border = "black")

80

Sampling Distribution of Sample Variance

Sample Variance

F
re

qu
en

cy

0 50 100 150 200 250

0.
00

0
0.

01
0

6.4 The central limit theorem

6.4.1 Find the probability when individual value is used (Page 292 Ejection
Seat Question)

mu <- 171 # population mean
sigma <- 46 # population standard deviation
n <- 25 # sample size
x_lower <- 140
x_upper <- 211

Find the probability between two X values
probability_range <- diff(pnorm(c(x_lower, x_upper), mean = mu, sd = sigma))
probability_range

[1] 0.5575477

6.4.2 Find the probability when sample mean is used (Page 292 Ejection Seat
Question)

81

Find the probability between two mean values x/bar (CLT)
standard_error <- sigma / sqrt(n) # Calculate the standard error of the sample mean
probability_range <- diff(pnorm(c(x_lower, x_upper), mean = mu,

sd = standard_error))# Find the probability
probability_range

[1] 0.9996167

82

7 ESTIMATING PARAMETERS AND
DETERMINGING SAMPLE SIZES

r-function Description
prop.test(successes,
n, conf.level=0.95)

Perform a hypothesis test for a single proportion. Pass a
hypothesized (𝐻0) proportion p if it’s not 0.5. Eg. p=0.6 for
𝐻0. Pass a parameter alternative for alternative hypothesis:
“two.sided”(default) ,“less”, “greater”. Note the conf.int given
by the test uses Wilson’s method than the Wald method used
in the book.

t.test(x,
conf.level=0.95)

Perform a 𝑡-test for a population mean. Accepts an additional
alternative argument for 𝐻1. The default hypothesized mean
is mu=0. Otherwise, pass a hypothesized mean value.

qt(p, df) Calculate the quantile for the probability p of 𝑡-distribution
with degree of freedom equal to df

qchisq(p, df) Calculate the quantile for the probability p of 𝜒2-distribution
with degree of freedom equal to df

7.1 Estimating a population proportion (Page 313 Online Course
Example)

7.1.1 Getting the CI directly

p_hat <- 0.53 # 0.53 for 53% sample proportion
n <- 950 # sample size
success <- n*p_hat # number of success

Calculate a 95% confidence interval for the population proportion
result <- prop.test(success, n, conf.level = 0.95)

Extract the confidence interval
conf_interval <- result$conf.int
Print the confidence interval (calculated by the Wilson method)
cat("Confidence Interval:", conf_interval[1], "to", conf_interval[2], "\n")

83

Confidence Interval: 0.4976792 to 0.5620751

7.1.2 Getting the CI step by step using the textbook’s Wald’s Method (slightly
different result than the result given above)

1.Critical value

Confidence level (e.g., 0.95 for 95% confidence)
confidence_level <- 0.95
get alpha value
alpha <- 1-confidence_level

Find the critical Z-value using qnorm()
critical_z <- qnorm (1 - alpha/2)
Print the result
cat("Critical Z =", critical_z, "\n")

Critical Z = 1.959964

2. Margin of error

Calculate the standard error
standard_error <- sqrt((p_hat * (1 - p_hat)) / n)
Calculate the margin of error
margin_of_error <- critical_z * standard_error
Print the result
cat("E=", margin_of_error, "\n")

E= 0.03173753

3. Confidence interval

Calculate the confidence interval
confidence_interval <- c (p_hat - margin_of_error,

p_hat + margin_of_error)

Print the confidence interval
cat("Confidence Interval:", confidence_interval[1], "to", confidence_interval[2], "\n")

Confidence Interval: 0.4982625 to 0.5617375

84

7.2 Estimating a population mean

7.2.1 Get the CI directly with sample data values given. (Page 343 Mercury
question)

In this case, the population 𝜎 is unknown.

Calculate a 98% confidence interval for the population mean
#Sample data
mercury <- c(0.56, 0.75, 0.10, 0.95, 1.25, 0.54, 0.88)
result <- t.test(mercury,conf.level = 0.98)

Extract the confidence interval
conf_interval <- result$conf.int

Print the confidence interval
cat("Confidence Interval:", conf_interval[1], "to", conf_interval[2],

"\n")

Confidence Interval: 0.2841145 to 1.153028

7.2.2 Get the CI step by step with given mean and standard deviation (Page
341 Hershey kisses question)

1. Critical value

confidence_level <- 0.99 # Confidence level (e.g., 0.99 for 99% confidence)
alpha <- 1- confidence_level
n <- 32 # Sample size

Calculate the degrees of freedom
degrees_of_freedom <- n - 1

Find the critical t-value using qt()
critical_t <- qt(1 - alpha/ 2, df = degrees_of_freedom)

Print the result
cat("Critical t-value for dof =", degrees_of_freedom,

"and confidence level =", confidence_level, ":", critical_t, "\n")

Critical t-value for dof = 31 and confidence level = 0.99 : 2.744042

2. Margin of error

85

Given sample standard deviation (this is s value)
sample_standard_deviation <- 0.1077

Calculate the standard error
standard_error <- sample_standard_deviation / sqrt(n)

Calculate the margin of error
margin_of_error <- critical_t * standard_error

Print the result
cat("Margin of Error for confidence level =", confidence_level,

"and sample size =", n, ":", margin_of_error, "\n")

Margin of Error for confidence level = 0.99 and sample size = 32 : 0.0522434

3. Confidence interval

x_bar<- 4.5210 # Sample mean

Calculate the lower and upper bounds of the confidence interval
lower_bound <- x_bar - margin_of_error
upper_bound <- x_bar + margin_of_error

Print the result
cat("Confidence Interval:", lower_bound, "to", upper_bound, "\n")

Confidence Interval: 4.468757 to 4.573243

7.3 Estimating a population Deviation or Variance (body
temperature example page 353)

7.3.1 Critical values

confidence_level <- 0.95 # Confidence level (0.95 for 95% confidence)
alpha <- 1- confidence_level
sample_size <- 106 # Sample size
degrees_of_freedom <- sample_size - 1 # df for the chi-squared distribution

Find the critical values using the chi-squared distribution
lower_critical_value <- qchisq(1-alpha/2, df = degrees_of_freedom)

86

upper_critical_value <- qchisq(alpha/2, df = degrees_of_freedom)

Print the results
cat("Lower Critical Value:", lower_critical_value, "\n")

Lower Critical Value: 135.247

cat("Upper Critical Value:", upper_critical_value, "\n")

Upper Critical Value: 78.5364

7.3.2 Confidence interval

sample_standard_deviation <- 0.62 # sample standard deviation s
sample_variance <- sample_standard_deviation^2 # Sample variance

Calculate the confidence interval for variance
confidence_interval <- c(((sample_size - 1) * sample_variance) / lower_critical_value,

((sample_size - 1) * sample_variance) / upper_critical_value)

Print the confidence interval
confidence_interval

[1] 0.2984318 0.5139273

87

8 HYPOTHESIS TESTING

r-function Description
prop.test(successes,
n, conf.level=0.95)

Perform a hypothesis test for a single proportion. Pass a
hypothesized (𝐻0) proportion p if it’s not 0.5. Eg. p=0.6 for
𝐻0. Pass a parameter alternative for alternative
hypothesis: “two.sided”(default) ,“less”, “greater”. Note the
conf.int given by the test uses Wilson’s method than the
Wald method used in the book. The test returns three
values: $p.value (for p-value), $statistic (for
test-statistic), and $conf.int (for confidence interval).

t.test(x,
conf.level=0.95)

Perform a 𝑡-test for a population mean. Accepts an
additional alternative argument for 𝐻1. The default
hypothesized mean is mu=0. Otherwise, pass a hypothesized
mean value.

z.test(x,
sigma.x=sigma,
conf.level=0.95)

Perform a 𝑧-test for a population mean with known
sigma.x=sigma. Accepts an additional alternative
argument for 𝐻1. The default hypothesized mean is mu=0.
Otherwise, pass a hypothesized mean value.

qnorm(p, mean=0, sd=1) Calculate the quantile of the normal distribution
corresponding to the probability p (from left-tail).

qt(p, df) Calculate the quantile for the probability p of 𝑡-distribution
with degree of freedom equal to df

qchisq(p, df) Calculate the quantile for the probability p of 𝜒2-distribution
with degree of freedom equal to df

attach(df) add a data frame df to the search path, which allows you to
access the variables within the data frame df directly by
their names instead of using a normal way such as df$var.

table tabulate the frequency counts of distinct values.
prop.table(table) Compute the proportions of a table or data. Pass an

argument margin for the direction: 1 for rows, 2 for columns,
or NULL for the entire table (default).

8.1 Basic of hypothesis testing

We will use the following functions to perform hypothesis tests.

88

library(BSDA)
prop.test(x, n, p = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, correct = TRUE)

t.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

z.test(
x, y = NULL,
alternative = "two.sided",
mu = 0, sigma.x = NULL, sigma.y = NULL,
conf.level = 0.95)

We use qnorm() and qt() functions to calculate critical values. For example, we can obtain
𝑧0.95 using the qnorm(0.95) for a normal distribution, and the critical value 𝑡0.05,5 using
qt(0.95, 5) for a t-distribution with 5 degree of freedom with 𝛼 = 0.05 as below.

qnorm(0.95)

[1] 1.644854

qt(0.95, 5)

[1] 2.015048

8.2 Testing a claim about a proportion

mtcars dataset has data for 32 automobiles in 1973-1974 with 11 variables. Among these
variable, we are interested to check if the proportion of V-shaped engine (vs = 0) is 0.5.
That is, 𝐻0 ∶ 𝑝 = 0.5.

data(mtcars)
attach(mtcars)
table(vs)

vs
0 1

18 14

89

prop.table(table(vs))

vs
0 1

0.5625 0.4375

8.2.1 Two-sided proportion test using the 𝑧-test (method in the textbook)

We first check if we can use a normal approximation to perform a proportion test. With a
sample size of 𝑛 = 32 and a proportion of interest 𝑝 = 0.5, both the expected number of
successes and failures are 𝑛𝑝 = 𝑛(1 − 𝑝) = 32 ⋅ 0.5 = 16. Since they are greater than 5, we
can apply the proportion test using a normal approximation. In our sample, the number of
success (vs=0) is 18 and the sample proportion is 0.56.

Example data
successes <- 18 # Number of successes
trials <- 32 # Total number of trials
null_prob <- 0.5 # Hypothesized population proportion under the null hypothesis

Calculate the sample proportion
sample_proportion <- successes / trials

Perform the z-test
z_stat <- (sample_proportion - null_prob) / sqrt(null_prob *

(1 - null_prob) / trials)

Calculate the p-value
p_value <- 2 * (1 - pnorm(abs(z_stat)))

Calculate the critical value
alpha <- 0.05
critical_value <- c(qnorm(alpha),qnorm(1-alpha))

Print the results
cat("Z-statistic:", z_stat, "\n")

Z-statistic: 0.7071068

cat("p-value:", p_value, "\n")

p-value: 0.4795001

90

cat("Critical values:", critical_value, "\n")

Critical values: -1.644854 1.644854

We are ready to make a decision using the following method:

• 𝑝-value method: The 𝑝-value 0.4795001 is greater than the significance level 𝛼 = 0.05,
therefore we fail to reject the Null hypothesis 𝐻0 ∶ 𝑝 = 0.5.

• critical value method: The test statistics 0.7071068 is not as extreme as the two
critical values, therefore we fail to reject the Null Hypothesis.

8.2.2 Two-sided proportion test using the built-in function prop.test

Next we will use the R built-in prop.test() function to perform one sample proportion
test. The syntax is below.

prop.test(x, n, p = p_0, conf.level=0.95, alternative=c("two.sided", "less",
"greater"))

Depending on the alternative hypothesis 𝐻1, we can choose one among two.sided, less,
and greater:

1. 𝐻1 ∶ 𝑝 ≠ 𝑝0: alternative = "two.sided"
2. 𝐻1 ∶ 𝑝 < 𝑝0 :alternative = "less"
3. 𝐻1 ∶ 𝑝 > 𝑝0: alternative = "greater"

It is remarkable that the built-in prop.test uses the Pearson 𝜒2 distributed test statistic
which is different than the 𝑧−test used by the textbook.

𝐻0 ∶ 𝑝 = 0.5 vs 𝐻1 ∶ 𝑝 ≠ 0.5

res <- prop.test(x=18, n=32, p = 0.50, alternative = "two.sided", conf.level = 0.95)
res

1-sample proportions test with continuity correction

data: 18 out of 32, null probability 0.5
X-squared = 0.28125, df = 1, p-value = 0.5959
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.3788033 0.7316489

91

sample estimates:
p

0.5625

cat("The p-value is given by ", res$p.value, "\n")

The p-value is given by 0.5958831

cat("The chi^2 test statistic is given by ", res$statistic, "\n")

The chi^2 test statistic is given by 0.28125

cat("The confidence interval is given by (", res$conf.int[1], ","
,res$conf.int[2], ")\n")

The confidence interval is given by (0.3788033 , 0.7316489)

Decision:

• P-Value: we fail to reject the Null Hypothesis since p-value 0.596 is greater than
𝛼 = 0.05.

• Critical Value: the 𝜒2 test statistic 0.281 is not as extreme as the critical values
which can be found as below. Thus, we fail to reject the Null Hypothesis.

the critical value can be calculated by the following code.
c(qchisq(0.025, 1), qchisq(0.975,1))

[1] 0.0009820691 5.0238861873

• Confidence Interval: the claimed proportion 0.5 falls within the confidence interval
of (0.379, 0.732). Thus we fail to reject the null hypothesis.

8.2.3 One-sided proportion test

𝐻0 ∶ 𝑝 = 0.5 vs 𝐻1 ∶ 𝑝 > 0.5

92

res <- prop.test(x=18, n=32, p = 0.50, alternative = "greater", conf.level = 0.95)
res

1-sample proportions test with continuity correction

data: 18 out of 32, null probability 0.5
X-squared = 0.28125, df = 1, p-value = 0.2979
alternative hypothesis: true p is greater than 0.5
95 percent confidence interval:
0.4041836 1.0000000

sample estimates:
p

0.5625

Decision:

• P-Value: we fail to reject the null hypothesis since p-value 0.298 is greater than
𝛼 = 0.05.

• Critical Value: the 𝜒2 test statistic 0.281 does not fall in the critical region which
is greater than 3.8414588 or smaller than 0.0039321. Thus, we fail to reject the null
hypothesis. The critical value can be found by

the critical value can be calculated by the following code.
c(qchisq(0.05,1), qchisq(0.95,1))

[1] 0.00393214 3.84145882

• Confidence Interval: the claimed proportion 0.5 falls within the confidence interval
of (0.404, 1). Thus we fail to reject the null hypothesis.

8.3 Testing a claim about a mean

8.3.1 Unknown 𝜎 with Nnormality assumption

We use one sample t-test with t.test() function when we assume normality for population
or the sample size is large enough. The syntax is as below if we want to test with a sample
vector (variable) x for 𝐻0 ∶ 𝜇 = 𝑚 with a given confidence level conf.level, for example,
conf.level=0.95.

93

t.test(x, mu= m, conf.level=0.95, alternative=c("two.sided", "less", "greater"))

Depending on the alternative hypothesis 𝐻1, we can choose one among two.sided, less,
and greater.

1. 𝐻1 ∶ 𝜇 ≠ 𝑚: alternative = "two.sided"
2. 𝐻1 ∶ 𝜇 < 𝑚 :alternative = "less"
3. 𝐻1 ∶ 𝜇 > 𝑚: alternative = "greater"

As an example, we test for mpg with 𝐻0 ∶ 𝜇 = 22. That is, we test if the population mean of
mpg is equal to 22. mtcars cars have 32 samples and the sample size is large enough to use
t-test with 𝛼 = 0.05.

8.3.1.1 Two-sided t-test

𝐻0 ∶ 𝜇 = 22 vs 𝐻1 ∶ 𝜇 ≠ 22

res <- t.test(mpg, mu=22, alternative = "two.sided", conf.level = 0.95)
res

One Sample t-test

data: mpg
t = -1.7921, df = 31, p-value = 0.08288
alternative hypothesis: true mean is not equal to 22
95 percent confidence interval:
17.91768 22.26357

sample estimates:
mean of x
20.09062

cat("The p-value is given by ", res$p.value, "\n")

The p-value is given by 0.08287848

cat("The test statistic is given by ", res$statistic, "\n")

The test statistic is given by -1.792127

94

cat("The confidence interval is given by (", res$conf.int[1], ",",
res$conf.int[2], ")\n")

The confidence interval is given by (17.91768 , 22.26357)

Decision:

• P-Value: we fail to reject the null hypothesis since p-value 0.083 is greater than
𝛼 = 0.05.

• Critical Value: the test statistic 𝑡 = -1.792 is closer to 0 than the critical values
which can be found as below. Thus, we fail to reject the null hypothesis.

the critical value can be calculated by the following code.
c(qt(0.025, df=31), qt(0.975, df=31))

[1] -2.039513 2.039513

• Confidence Interval: the claimed mean 22 falls within the confidence interval of
(17.918, 22.264). Thus we fail to reject the null hypothesis.

8.3.1.2 One-sided t-test 𝐻1 ∶ 𝜇 < 𝑚

𝐻0 ∶ 𝜇 = 22 vs 𝐻1 ∶ 𝜇 < 22

res <- t.test(mpg, mu=22, alternative = "less", conf.level = 0.95)
res

One Sample t-test

data: mpg
t = -1.7921, df = 31, p-value = 0.04144
alternative hypothesis: true mean is less than 22
95 percent confidence interval:

-Inf 21.89707
sample estimates:
mean of x
20.09062

Decision:

• P-Value: we reject the null hypothesis since p-value 0.041 is less than 𝛼 = 0.05.

95

• Critical Value: the test statistic 𝑡 = -1.792 falls in the critical region which is less
than 𝑡0.05,31 = -1.696. Thus, we reject the null hypothesis.

the critical value can be calculated by the following code.
qt(0.05, df=31)

[1] -1.695519

• Confidence Interval: the claimed mean 𝜇 = 22 does not fall within the confidence
interval of (−∞, 21.897). Thus we reject the null hypothesis.

8.3.2 Known 𝜎 with normality assumption

We use one sample z-test or normal test with z.test() function when we assume normality
for population with known population standard deviation 𝜎. The syntax is as below if we
want to test with a sample vector (variable) x for 𝐻0 ∶ 𝜇 = 𝑚 with 𝛼 = 0.05 and a known
sigma.

#library(BSDA)
z.test(x, mu = m, sigma.x = sigma, conf.level = 0.95,
alternative = c("two.sided", "less", "greater"))

Depending on the alternative hypothesis 𝐻1, we can choose one among two.sided, less,
and greater.

1. 𝐻1 ∶ 𝜇 ≠ 𝑚: alternative = "two.sided"
2. 𝐻1 ∶ 𝜇 < 𝑚 :alternative = "less"
3. 𝐻1 ∶ 𝜇 > 𝑚: alternative = "greater"

For example, we test for mpg with 𝐻0 ∶ 𝜇 = 22. Assume mpg follows a normal distribution
with 𝜎 = 6, then we can use z-test with 𝛼 = 0.05.

8.3.2.1 Two-sided z-test

𝐻0 ∶ 𝜇 = 22 vs 𝐻1 ∶ 𝜇 ≠ 22

library(BSDA)
res <- z.test(mpg, mu=22, sigma.x = 6, alternative = "two.sided", conf.level = 0.95)
res

96

One-sample z-Test

data: mpg
z = -1.8002, p-value = 0.07183
alternative hypothesis: true mean is not equal to 22
95 percent confidence interval:
18.01177 22.16948

sample estimates:
mean of x
20.09062

cat("The p-value is given by ", res$p.value, "\n")

The p-value is given by 0.07183285

cat("The test statistic is given by ", res$statistic, "\n")

The test statistic is given by -1.800176

cat("The confidence interval is given by (", res$conf.int[1], "," ,
res$conf.int[2], ")\n")

The confidence interval is given by (18.01177 , 22.16948)

Decision:

• P-Value: we fail to reject the null hypothesis since p-value 0.072 is greater than
𝛼 = 0.05.

• Critical Value: the test statistic 𝑧 = -1.8 is closer to 0 than the critical values as
found below. Thus, we fail to reject the null hypothesis.

the critical value can be calculated by the following code.
c(qnorm(0.025), qnorm(0.975))

[1] -1.959964 1.959964

• Confidence Interval: the claimed mean 22 falls within the confidence interval of
(18.012, 22.169). Thus we fail to reject the null hypothesis.

97

8.3.2.2 One-sided z-test 𝐻1 ∶ 𝜇 < 𝑚

𝐻0 ∶ 𝜇𝑚𝑝𝑔 = 22 vs 𝐻1 ∶ 𝜇𝑚𝑝𝑔 < 22

res <- z.test(mpg, mu=22, sigma.x = 6, alternative = "less", conf.level = 0.95)
res

One-sample z-Test

data: mpg
z = -1.8002, p-value = 0.03592
alternative hypothesis: true mean is less than 22
95 percent confidence interval:

NA 21.83526
sample estimates:
mean of x
20.09062

Decision:

• P-Value: we reject the null hypothesis since p-value 0.036 is less than 𝛼 = 0.05.
• Critical Value: the test statistic 𝑧 = -1.8 falls in the critical region which is less than

𝑧0.05 = -1.645. Thus, we reject the null hypothesis.

the critical value can be calculated by the following code.
qnorm(0.05)

[1] -1.644854

• Confidence Interval: the claimed mean does not fall within the confidence interval
of (−∞, 21.835). Thus we reject the null hypothesis.

98

9 INFERENCE FROM TWO SAMPLES

There is no content for this chapter.

99

10 CORRELATION AND REGRESSION

r-function Description
data('dataset_name') Load a R built-in dataset named by ‘dataset_name’
names(x) Retrieve or set the names of elements in x
attach(df) Add a data frame df to the search path, which allows you to

access the variables within the data frame df directly by their
names instead of using a normal way such as df$var.

cor(x,y) Find the correlation of two vectors x and y
qplot(x,y,data) Create a quick plot data (x,y) in the dataframe data
geom_text(aes(x,y,
label))

Add a label at the coordinate (x,y) in the current plot.

lm(y~x, data) Perform the linear regression of y~x, where y,x are column
names in the dataframe data.

summary(lm_model) Summarize the linear model lm_model obtained by the
R-function lm.

10.1 Correlation

We check if a linear correlation exists between two variables using cor() function.

We can calculate the correlation coefficient between x and y with the
following code.
cor(x, y)

library(tidyverse)
library(patchwork)
data("mtcars")
names(mtcars)

[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
[11] "carb"

100

attach(mtcars)
positive correlation
qplot(wt, disp, data = mtcars) +

geom_text(aes(x=2, y=400, label="r = 0.888"))

r = 0.888

100

200

300

400

2 3 4 5
wt

di
sp

cor(wt, disp)

[1] 0.8879799

negative correlation
qplot(mpg, wt, data = mtcars) +

geom_text(aes(x=30, y=5, label="r = - 0.868"))

101

r = − 0.868

2

3

4

5

10 15 20 25 30 35
mpg

w
t

cor(mpg, wt)

[1] -0.8676594

no correlation
qplot(drat, qsec, data = mtcars) +

geom_text(aes(x=4.5, y=22, label="r = 0.091"))

102

r = 0.091

16

18

20

22

3.0 3.5 4.0 4.5 5.0
drat

qs
ec

cor(drat, qsec)

[1] 0.09120476

• wt and disp have a positive correlation with r =0.888.
• wt and disp have a negative correlation with r = -0.868.
• wt and disp does not have a significant correlation with r = -0.175.

10.2 Linear regression

Assume we have a data set data with x and y variables and we model their relationship by
linear regression. We can find the slope and the intercept of the estimated regression line
using the following code.

res <- lm(y ~ x, data)
summary(res)

For example, we can find the regression line equation between disp (𝑥-variable, predictor)
and wt (𝑦-variable, response) as below.

data("mtcars")
res <- lm(wt ~ disp, mtcars)
summary(res)

103

Call:
lm(formula = wt ~ disp, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-0.89044 -0.29775 -0.00684 0.33428 0.66525

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.5998146 0.1729964 9.248 2.74e-10 ***
disp 0.0070103 0.0006629 10.576 1.22e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4574 on 30 degrees of freedom
Multiple R-squared: 0.7885, Adjusted R-squared: 0.7815
F-statistic: 111.8 on 1 and 30 DF, p-value: 1.222e-11

The estimated regression line is wt = 1.600 + 0.007 disp since the intercept is 1.6 and
the slope is 0.007. Both of them are significantly different from 0 with a significance level
𝛼 = 0.05 because their 𝑝-values are almost 0. The linear relation means that one inch
increase in disp (displacement) makes 7 lbs increase in wt (weight). On average, if a car
has a one-inch longer displacement, it is 7 pounds heavier.

If a car has 200 inches displacement, then its estimated weight can be calculated as

1.600 + 0.007 ⋅ 200 = 3000 lbs

We next use the R package ggplot to visualize the data set and the regression line.

ggplot(mtcars, aes(x=disp, y=wt)) + # define x and y
geom_point()+ # scatter plot
geom_smooth(method=lm, se=FALSE) + # add a regression line
geom_text(aes(x = 150, y = 4.5, label = "wt = 1.600 + 0.007disp")) #add a label

104

wt = 1.600 + 0.007disp

2

3

4

5

100 200 300 400
disp

w
t

105

References

Triola, Mario F. 2022. Elementary Statistics. USA: Pearson.

106

	PREFACE
	SETTING-UP COMPUTING ENVIRONMENT
	Setting up your own computing environment on a personal computer
	Use R-Studio Cloud (No setting-up needed)

	QUICK START TO R PROGRAMMING
	1-minture R Programming Introduction

	EXPLORING DATA WITH TABLES AND GRAPHS
	Frequency Distributions
	Frequency distributions
	Relative frequency distributions

	Histograms
	Histogram
	Relative frequency histogram
	Common distributions
	Normal quantile plots
	Let's put it all together!

	Graphs that enlighten and graphs that deceive
	Dotplot
	Stem plot
	Scatter Plot
	Time-series Graph
	Pie Chart
	Pareto Chart
	Let's put it all together!

	Scatter plots, correlation, and regression
	Linear correlation
	Regression line
	Let's put it all together!

	DESCRIBING, EXPLORING, and COMPUTING DATA
	Measures of center
	Mean
	Median
	Mode
	Midrange
	Let's put it all togeher!

	Measures of variation
	Visualizing variation
	Range
	Standard deviation
	Variance
	Let's put it all togeher!

	Measures of relative standing and boxplots
	z-Scores
	Percentiles
	Quartiles & the 5-number summary
	Boxplot
	Let's put it all together!

	PROBABILITY
	Basic concepts of probability
	Addition rule and multiplication rule
	Complements, conditional probability, and Bayes' theorem
	Counting
	Calculate factorial n!
	Find all permutations and the number of all permutations
	Find all combinations and the number of all combinations

	DISCRETE PROBABILITY DISTRIBUTION
	Probability distribution
	Calculate sample mean, standard deviation and variance with equal probability
	Expectation and standard deviation with a given probability distribution
	Median

	Binomial probability distributions
	Poisson probability distributions (Optional)

	NORMAL PROBABILITY DISTRIBUTION
	The standard normal distribution
	Normal distribution graph (Optional)
	Find the probability (area) when z scores are given
	Find z scores when the area is given

	Real application of normal distribution
	Convert an individual x value to a z-score
	Find the probability when x value is given (page 269 Pulse Rates Question)
	Convert a z-score back to x value

	Sampling distributions and estimators (Optional)
	General behavior of sampling distribution of sample proportions
	General behavior of sampling distribution of sample means
	General behavior of sampling distribution of sample variances

	The central limit theorem
	Find the probability when individual value is used (Page 292 Ejection Seat Question)
	Find the probability when sample mean is used (Page 292 Ejection Seat Question)

	ESTIMATING PARAMETERS AND DETERMINGING SAMPLE SIZES
	Estimating a population proportion (Page 313 Online Course Example)
	Getting the CI directly
	Getting the CI step by step using the textbook's Wald's Method (slightly different result than the result given above)

	Estimating a population mean
	Get the CI directly with sample data values given. (Page 343 Mercury question)
	Get the CI step by step with given mean and standard deviation (Page 341 Hershey kisses question)

	Estimating a population Deviation or Variance (body temperature example page 353)
	Critical values
	Confidence interval

	HYPOTHESIS TESTING
	Basic of hypothesis testing
	Testing a claim about a proportion
	Two-sided proportion test using the z-test (method in the textbook)
	Two-sided proportion test using the built-in function prop.test
	One-sided proportion test

	Testing a claim about a mean
	Unknown \sigma with Nnormality assumption
	Known \sigma with normality assumption

	INFERENCE FROM TWO SAMPLES
	CORRELATION AND REGRESSION
	Correlation
	Linear regression

	References

