STAT 1010 Lecture Notes

Yi Wang

2023-08-11

Table of contents

Preface

1 Introduction

2 Setting-up Python Computing Environment

2.1

2.2

Use Google Colab
2.1.1 How to run a project file from your Google Drive?
On your own computer e e e

3 Setting-up R Studio Computing Environment

3.1
3.2

Setting up your own computing environment on a personal computer
Use R-Studio Cloud (No setting-up needed)

4 Use Git and GitHub

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

4.11
4.12

4.13

Download Git o
Establish a connection between a local repo and a remote GitHub repo.
4.2.1 Clone an existing repo on GitHub
4.2.2 Initializing a Git Directory Locally First
Some other common commandso
Use Git help o o
When the upstream repo changes L L oL oL
Create branch
Merge branch to main branch L.
Handle large files (>= 150Mb) on GitHub
Contribute by forking a GitHub repo and commit to the forked repo and create
a pull request (refer to [the best workflow below]Section 6.3)
Project o L
Moreon git
Git pull: What does ——ff mean?
4.12.1 git pull or git pull --ff (merge fallback)
4.12.2 Option 2: git pull --rebase (replay your work on top of remote) . .
How to set opitons gloabally

5 Concrete example: what does “merge C with D to produce M” look like?

5.0.1 Commits and changes
5.0.2 You run: git pull (merge strategy) or git merge origin/main

00~ -1~

Nop (<)

10
10
10
10
11
13
15
15
16
16
16

17
18
19
19
20
21
21

22
22
22

6 3) What is git push --force-with-lease (and why it’s safer than --force)? 24

6.0.1 Typical rebase + pushflow 24
6.0.2 Example workflow with git stash 24
6.1 Rebuild the index respecting .gitignore 27
6.2 Unstage and untrack 27
6.2.1 To unstage (but keep tracking): 27
6.2.2 Tounstage: 27
6.2.3 Prevent tracking in the futureo 28
6.3 Best workflow with GitHub from Colab (or a local device) 28
6.4 Team Github workflow L o 29
6.5 Initial setup L 29
6.6 Keep your forkinsync L Lo 30
6.7 Git FAQ .« o o o oo e e 30
6.7.1 Working directory (working tree) vs “actual files on disk”? Save vs
commit? What are “index” and “working tree”? 31
6.7.2 1) After git add, how to undo (un-add) a file or directory? 32
6.7.3 2) After git commit, how to un-commit? 32
6.7.4 3) When git push, what conflicts can occur? How to fix them? 33
6.7.5 4) When git pull, what conflicts can occur, and how to fix them? . . . 34
6.7.6 5) Why create a new branch instead of working on main? 35
6.7.7 6) How git stash works and why weneed it 35
6.7.8 8) Difference between git reset and git revert 36
6.7.9 9) How to remove files that are already pushed? Explain git rm --cached 36
6.7.10 10) Difference between git pull --rebase and git pull -ff 37
6.7.11 11) Explain git rebase 37
6.8 4) Difference between git rebase and git merge 38
6.8.1 Merge e 38
6.8.2 Rebase. 38
6.8.3 On which branch do merge and rebase happen? 39
6.9 Quick reference (handy snippets) 39
6.10 1) Index vs. working files (aka working tree) 40
6.11 3) “I saved a file on one branch, then checked out a new branch and edited it
again. What version do I have on disk?” 41
6.11.1 Cases e 41
6112 THPS « o v o e e e e 41
6.12 4) Suggested team workflow (you maintain main, teammates contribute) 42
6.12.1 Repository / policy (one-time setup) 42
6.12.2 Personal Git config (everyone) 42
6.12.3 Contributor workflow (feature branch) 42
6.12.4 Maintainer (you) merging PRs L. 43
6.12.5 Hotfixes 43
6.12.6 Common “gotchas” and fixes 43
6.12.7 Quick reference of commands mentionedo 44

7 My Jupyter Notebook
7.0.1 Perform addtion
7.0.2 Horizontal Rule
7.03 Buletlist
7.04 Numbered list
7.0.5 Tables e
7.0.6 Hyperlinks e
7.07 Images. o . o
7.0.8 Code/Syntax highlighting
7.0.9 Blocked quotes
7.0.10 Strikethrough Lo

8 Homework Assignments

References

45
45
45
46
46
46
46
46
46
47
47

48

50

Preface

This is a book for STAT 1010: Introduction to Data Science at Auburn University at Mont-

gomery. The book is written using Quarto.

To learn more about Quarto books visit https://quarto.org/docs/books.

https://quarto.org/docs/books

1 Introduction

This is a book for STAT 1010: Introduction to Data Science offered at Auburn University at
Montgomery.

This an ongoing project and updates are perpetually added.

2 Setting-up Python Computing Environment

2.1 Use Google Colab

All you need is a Google account. Sign in your Google account in a browser, and navigate
to Google Colab. Google Colab supports both Python and R. Python is the default engine.
Change the engine to R in Connect->change runtime type. Then you are all set. Your
file will be saved to your Google Drive or you can choose to send it to your GitHub account
(recommended).

2.1.1 How to run a project file from your Google Drive?

Many times, when you run a python file in Colab, it needs to access other files, such as data
files in a subdirectory. In this case, it would be convenient to have the same file structure in
the Google Colab user home directory. To do this, you can use Google Drive to store your
project folder, and then mount the Google Drive in Colab.

Let’s assume the project folder name, pydata-book/.Here are the steps:

1. git clone the project folder (example: git clone https://github.com/wesm/pydata-book.git)
to your local folder. This step is only needed when you want to clone some remote repo
from GitHub.

2. Upload the folder (ex: pydata-book) to Google Drive.

3. Open the file using Colab. In Google Drive, double click on the ipynb file, example,
ch06.ipynb (or click on the three dots on the right end, and choose open with, then
Google Colaborotary), the file will be opened by Google Colab.

4. Mount the Google Drive. In Google Colab, with the specific file (example,
ch06.ipynb) being opened, move your cursor to the first code cell, and then click on
the folder icon (this should be the fourth icon) on the upper left border in the Colab
browser. This will open the file explorer pane. Typically you would see a folder named
sample_data shown. On the top of the pane, click on the Google Drive icon to mount
the Google Drive. Google Colab will insert the following code below the cursor in your
opened ipynb file:

from google.colab import drive
drive.mount('/content/drive"')

Run this code cell by pressing SHIFT+ENTER, and follow the prompts to complete the authen-
tication. Wait for ~10 seconds, your Google Drive will be mounted in Colab, and it will be
displayed as a folder named drive in the file explorer pane. You might need to click on the
Refresh folder icon to see the folder drive.

5. Open a new code cell below the above code cell, and type the code

%cd /content/drive/MyDrive/pydata-book/

This is to change the directory to the project directory on the Google Drive. Run this code cell,
and you are ready to run the file ch06.ipynb from the folder pydata-book on your personal
Google Drive, just like it’s on your local computer.

2.2

A T

12.
13.

On your own computer

Anaconda: Download anaconda and install using default installation options

VSC: Download VSC and install

start VSC and install VSC extensions in VSC: Python, Jupyter, intellicode

(optional) Quarto for authoring: Download Quarto and install

Start an anaconda terminal. Navigate to the file directory.

Setup a conda virtual environment: stat1010 and install python and ipykernel engines

conda create -n statl1010 python ipykernel

. Activate the venv: conda activate stat1010

. start VSC by typing code . in the anaconda terminal.
. open/create a .ipynb or .py file.

10.
11.

Select the kernel stat1010
Run a code cell by pressing Shift+Enter or click the triangular play button.
Continue to run other cells.

After finishing using VSC, close the VSC, and deactivate the virtual environment in a
conda terminal: conda deactivate

3 Setting-up R Studio Computing
Environment

3.1 Setting up your own computing environment on a personal
computer

This is the recommended way and the advantage is that it’s easy to handle files.

o Go to the website <https://posit.co/download/rstudio-desktop/>.

o Follow the two steps:

1. download and install R: Choose the appropriate operating system, and then choose
“base” to “install R for the first time”. You can simply accept all default options.

2. download Rstudio Desktop and Install it.

After installation, start R-Studio, and you are ready to use it.

3.2 Use R-Studio Cloud (No setting-up needed)
Alternatively, one can save the hassle of setting up on a personal computer and use the R-
Studio Cloud for free. Here are the steps:

e Go to the website https://login.rstudio.cloud.

o Either create a new account using an email address such as your AUM email or simply
“Log in using Google” or click on other log-in alternative.

After log-in to your account, you are ready to use R Studio.

https://login.rstudio.cloud

4 Use Git and GitHub

I assume you already have an account on https://github.com. If not, you need to create an
account there.

4.1

4.2

Download Git

. Go to the website https://git-scm.com/downloads, select an appropriate operating sys-

tem, select “Click here to download”

Run the downloaded setup file with a name such as Git-2.42.0.2-64-bit.exe, and
accept all default options.

Establish a connection between a local repo and a remote
GitHub repo

4.2.1 Clone an existing repo on GitHub

This is an easier way to establish a connection between a local repo and a remote repo if
the remote repo is created ahead. We will make a connection between a remote repo in your
GitHub account and a local directory. If the remote repo is not under your account, then skip
steps 1 and 2.

1.

Sign in to your GitHub account, and create a GitHub repo (such as named homework)
on GitHub (https://github.com), you can add a README.md file or just choose not to
add a README.md file.

On your local computer, open a Git Bash terminal.

Skip this step if you simply want the cloned repo to be in the current directory. Oth-
erwise, In the terminal, type mkdir myfolder (create a folder named myfolder within
the current directory) and then cd myfolder (change to the directory myfolder). The
directory name myfolder can be any name you want.

10

https://github.com
https://git-scm.com/downloads
https://github.com

4. git clone https://github.com/Your_Git_UserName/homework.git (change the re-
mote repo path to match your actual remote repo).

1 Note

To specify a specific folder to clone to, add the name of the folder after the repository
URL, like this: git clone github-repo-URL mylocalfolder

5. Now you have established a connection between your local directory homework and the
remote repo homework on GitHub.

6. Create a new file in the current local directory homewor on your local computer, such as
using your favorite editor to create a file named myfirstlocalfile.txt with any content
in it. Or for the sake of demonstration, you can use the following Linux command to
create this file containing the line #My first local file.

echo "#My first local file" >> myfirstlocalfile.txt

7. In the terminal, git add . This will add all changes to the staging area. This lets
Git start to track the changes to files in your local directory.

8. Now you are ready to commit the changes, which versions (takes a snapshot of) the
current files in the directory. A commit is a checkpoint where you can go back to.

git commit -m "my first commit from local"
9. Now you are ready to sync the local repo with the remote repo.
git push

The GitHub might ask you to sign in for the first time. Choose Sign in with your
brower to sign in to complete the push.

4.2.2 Initializing a Git Directory Locally First

The previous approach initializes a local Git repo by cloning a remote repo. You can also
initialize a local Git repo by using git init. Follow the following steps:

3. Sign in to your GitHub account.

4. Create a GitHub empty repo (such as named homework) on GitHub (https://github.com)
but make sure it is empty (do not add Readme.md file)

11

https://github.com

5. Start a Git Bash Terminal window on your local computer (You could also use the
Terminal Window in RStudio or VSC). Navigate to the project directory; if you haven’t
yet created a project directory such as homework, do

mkdir project_dir Example: mkdir homework
Use cd project_directory_name to enter your local project directory;

Use 1s to list all files and directories or use 1ls -al to include all hidden files and
directories. In your local Git Terminal, (note at this moment your local project directory
is empty)

echo "# homeworkO" >> README.md #create a file README.md

git init

git branch -M main #rename the branch name to main

git add . # may use git add --all

git commit -m "first commit"

git remote add origin https://github.com/ywanglab/homework.git #(change the remote repo
git push -u origin main # only need to do this first time. Afterwards, only “git push’

1 Note
1. the general command format: git push [remote-name] [branch-name]

2. difference between git add . and git add --all:

git add .: stages changes in the current directory and its subdirectories but
does not include file deletions

git add --all: stages changes in the entire working tree, including deletions
and untracked files. It is a more aggressive option and can be useful when
you want to ensure that every change, including file deletions, is included in
the next commit.

git add --all is equivalent to git add -A

6. if your local project directory already 1) contains files and 2) had performed init git
before, then

git remote add origin https://github.com/ywanglab/homework.git™ #(change the remote repc
git branch -M main
git push -u origin main

7. in the pop-out GitHub Sign-in window, click on Sign in with your browser.

8. Note an empty folder would not be pushed to the remote repo until it has a file (even
an empty file) in it. In this case, you can create an empty file such as .gitignore

12

4.3

8.

Some other common commands

. check git status: git status and git status --short for a compact way.

. git commit -a -m "message" will stage and commit every changed, already tracked

file without using git add changed_file

. git add file_changed

add file_changed to the staging environment, i.e., git repo to start track those
changes.

. use git log to check all commits. Use git log --pretty=oneline or just git log

--oneline for shorter display.

git log origin/main #check the remote repo origin/main commits

. use git diff origin/main to show the differences between the local main and

origin/main.

. use git checkout . to revert back to the previous commit. Any changes after the

previous commit will be abandoned.

. to get to a previous commit, use git checkout seven_character_commit_hash. To

get back to main, use git checkout main.

Git commit --amend

commit --amend is used to modify the most recent commit. It combines changes in the staging
environment with the latest commit, and creates a new commit. This new commit replaces
the latest commit entirely. Adding files with--amend works the same way as above. Just add
them to the staging environment before committing.

One of the simplest things you can do with --amend is to change a commit message with
spelling errors.

9.

Git Revert HEAD:

revert is the command we use when we want to take a previous commit and add it as
a new commit, keeping the log intact. Revert the latest commit using git revert HEAD
(revert the latest change, and then commit), adding the option --no-edit to skip the
commit message editor (getting the default revert message):

git revert HEAD --no-edit

13

1 Note

To revert to earlier commits, use git revert HEAD~x (z being a number. 1 going
back one more, 2 going back two more, etc.)

10. Git Reset

reset is the command used when we want to move the repository back to a previous
commit, discarding any changes made after that commit. Let’s try and do that with
reset.

git reset seven-char-commit-hash
11. Git Undo Reset

Even though the commits are no longer showing up in the log, it is not removed from
Git. If you know the commit hash you can reset to it:

git reset seven-char-commit-hash

12. To permanently go back to a previous commit, use
git reset --hard seven_char_commit_hash

13. to go back to a previous commit, but not changing the files in the working directory use
the ——soft‘ option.

git reset --soft seven_char_commit_hash

14. git remote -v Get the reminder of the remote repo. To rename the remote origin: git
remote rename origin upsteam rename remote repo origin to upstream

i Note

According to Git naming conventions, it is recommended to name your own repos-
itory origin which you have read and write access; and the one you forked
for upstream (which you only have read-only access.)

15. if you want to remove the file only from the remote GitHub repository and not remove
it from your local filesystem, use:

git rm -rf --cached filel.txt #This will only remote files; If intending to remove local fil
git commit -m "remove filel.txt"

And then push changes to remote repo

14

git push origin main

14.

For some operating system, such as Mac or Linux, you might be asked to tell GitHub who
you are. When you are prompted, type the following two commands in your terminal
window:

git config --global user.name "Your Name"
git config --global user.mail "your@email.com"

This will change the Git configuration in a way that anytime you use Git, it will know this
information. Note that you need to use the email account that you used to open your
GitHub account. global sets the username and e-mail for every repo on your computer.
If you want to set the username/e-mail just for the current repo, remove global.

4.4

4.5

Use Git help

. git command -help See all the available options for the specific command. Use ‘--help

instead of -help to open the relevant Git manual page.

. git help --all See all possible commands

When the upstream repo changes

When Git tells you the upstream repo is ahead,

15.

16.

Do git pull or git pull origin
This is equivalent to git fetch origin, and then git merge origin/main.Then you

can commit and push a new version to the remote repo.

git pull will not pull a new branches on the remote repo to local, but it will inform
you if there is a new branch on the remote repo. In this case, just git checkout
the_remote_new_branch_name will pull the remote branch to local. Note there is no
need to create locally the branch by git branch the_remote_new_branch_name

15

4.6 Create branch

16. To add a branch to the main branch git branch branchname
Switch the branch git checkout branchname

To combine the above two actions, git checkout -b branchname, create a new branch
named branchname if it does not exist and move to it.

Adding a file in branch echo "#content" >> filename.txt

Then add the file and commit the file. To push the branch to the remote repo we have to
use

git push --set-upstream origin branchname The option --set-upstream can be
replaced by -u

to see all branches in both local and remote: git branch -a Or git branch -r for remote
only.

4.7 Merge branch to main branch

1. Switch from a branch (with name such as branchname to the main using
git checkout main

2. on the main branch, Merge command to merge the branches
git merge branchname

To delete a branch:

git branch -d branchname

4.8 Handle large files (>= 150Mb) on GitHub

GitHub does not allow to upload a file of size greater than 150Mb. However, one can use git
1fs to handle large files exceeding this size up to several Giga bytes. The first thing is to
install git 1fs. Head to https://git-lfs.com, once dowlonad and install the Git command line
extension, set up Git LF'S for your user account by running

git 1fs install #(only need to do this the first time)

16

https://git-lfs.com

Then
Git L

In each Git repository where you want to use Git LFS, select the file types you’d like
FS to manage (or directly edit your .gitattributes). You can configure additional file

extensions at any time.

git 1fs track "path/to/file"

Then

do the regular git add . and git -m "message" and git push. Note one must use

git 1fs track a file first before doing git add and git commit.

git
git
git
git
git

1 Note

Note you need to track the large-size file first before you add it to the staging area. But
often you will find this error after you try to push your changes to the GitHub. In this
case, you will have to remove the commit history of this file first. One way to do this is
to reset -soft the HEAD to the previous working HEAD, and then do git 1fs track
followed by git add and git commit, git push. Specifically,

Note the --soft option allows the changes in the working directory not affected, other-
wise any change after the previous commit will be removed.

reset —-soft HEAD ~1 # or the_7-char_commit_hash
1fs track "path/to/large_file"

add .

commit -m "commit message"

push

4.9

Contribute by forking a GitHub repo and commit to the forked
repo and create a pull request (refer to [the best workflow
below]Section 6.3)

. after forking a (foreign) GitHub repo to your own GitHub account, git clone that repo

under your account to your local repo.

. make changes in your local directory.

. Submitting your changes for review

17

1. Commit your changes locally. Once you are ready to submit your changes, run
these commands in your terminal:

git add -A # Stages all changes, short for --all
git commit -m '[your commit message]' # Makes a git commit

2. Make a pull request. (A pull request is a proposal to change) A GitHub pull
request allows the owner of the forked upstream repo to review and make comments
on your changes you proposed. Once approved, the upstream owner can merge your
changes. Run:

git push origin # Push current branch to the same branch on GitHub

4. Then go to your remote forked repo in your account on the GitHub site and click Con-
tribute,and then Open pull request, this will take you to the upstream repo. In the
form, leave a message explaining the change, and Create pull request. Do not select
Close pull request unless you want to cancel the pull request.

4.10 Project

1. First make sure you have forked the course repo https://github.com/ywanglab/stat1010.git
to your own GitHub account.

2. Now go to your GitHub account, git clone the forked course repo

git clone https://github.com/your_git_user_name/stat1010.git

to your local computer
4. add your resume file in the folder ./resume

git add, commit and push your changes to the upstream repo using

git add .
git commit -m "added YourFirstName's resume"
git push origin
5. Then go to your remote forked repo in your account on the GitHub site and click Con-
tribute,and then Open pull request, this will take you to the upstream repo. In the

form, leave a message explaining the change, and Create pull request. Do not select
Close pull request unless you want to cancel the pull request.

18

4.11 More on git

git pull = git fetch + git merge

o git fetch — downloads commits from the remote into your local refs (e.g. origin/main).
e git merge — merges those new commits into your current branch.

4.12 Git pull: What does —-ff mean?

e ——ff = fast-forward if possible.

e That means: if your branch has no local commits since it last matched the remote,
Git will simply move the branch pointer forward to match the remote — no merge
commit is created.

Example (before pull):

A---B---C (origin/main)

A---B (main)

If you run git pull --ff and your branch is strictly behind origin/main, Git just slides
main forward:
A---B---C (origin/main, main)
e git pull without flags:
— May create a merge commit if histories diverged.
e git pull —-ff:

— Does a fast-forward if possible.
— If not possible (you made local commits), Git falls back to a merge commit.

e git pull --ff-only:

— Does a fast-forward only.
— If not possible, it aborts with an error (no merge commit allowed).

o ——ff is safe if you don’t mind merge commits being created when necessary.

o --ff-only is stricter (no merge bubbles, linear history).

19

o Teams often configure one of these globally so git pull always behaves consistently.
when there is a diverge

e ——ff-only — aborts with an error.
o —-—ff — falls back to a merge, creating a merge commit (see next section).

4.12.1 git pull or git pull --ff (merge fallback)

e Git fetches origin/main at C
e Git merges C into your local main with D, producing M:

After pull (local):
ABC

\ A
DM (main)

merge commit

When you run git merge origin/main (or git pull with merge strategy):

o Git identifies the common ancestor of the two branches — here, commit B.

e Then it looks at:

— The changes between B — C (remote’s changes).
— The changes between B — D (your changes).

e Git tries to combine both sets of changes into a new snapshot.

That new snapshot becomes a new commit M. The merge commit M exists only locally until
you git push. * When you push, origin/main is updated to point to M, and the remote
history now includes that merge commit.

o Pros: Preserves exact history as it happened (no rewrite).
e Cons: Adds merge commits; history can get “braided”.

20

4.12.2 Option 2: git pull --rebase (replay your work on top of remote)

¢ Git rewrites your local commits onto the fetched remote tip:

— Rewrites D into D' applied after C.

A BCD' (main)

~

rebased (new) commit

e Pros: Linear history, no merge commit.
o Cons: Rewrites your local commits (new SHAs). If you had already pushed D, you'll
need git push --force-with-lease, see below.

4.13 How to set opitons gloabally

o Team prefers linear history — git pull --rebase (and set it as default)

git config --global pull.rebase true
git config --global rebase.autoStash true

o Keep exact history / avoid rewrite — git pull --ff (merge when needed)

git config --global pull.rebase false

¢ Never auto-merge; be explicit — git pull --ff-only

git config --global pull.ff only

21

5 Concrete example: what does “merge C
with D to produce M” look like?

Assume the repo has one file, README . md.

5.0.1 Commits and changes

o B (common ancestor) README.md:
Hello project
o C (remote, on origin/main) — someone else added a line:

Hello project
Remote line

e D (your local commit, on main) — you added a different line:

Hello project
Local line

So history diverged:

ABC (origin/main)
\

D (main)

5.0.2 You run: git pull (merge strategy) or git merge origin/main

Git computes the diff B—C (“add Remote line”) and B—D (“add Local line”), applies
both, and creates merge commit M:

o M (merge result):

Hello project
Local 1line
Remote line

22

(order may vary if both append—Git picks a consistent merge; if both edit the same line,
you’ll get a conflict to resolve.)

New history:

ABC

\ A\
DM (main)

M has two parents: D and C. That’s a “merge commit”.

23

6 3) What is git push --force-with-lease
(and why it’s safer than --force)?

When you rebase local commits that were already pushed, your local branch history no longer
matches the remote’s. A normal git push will be rejected. You need to overwrite the remote
branch tip—i.e., a force push.

e git push --force overwrites the remote branch unconditionally (dangerous—you
could clobber someone else’s new commits if they pushed while you were rebasing).

e git push --force-with-lease is the safe version:

— It says: “Force-push only if the remote branch still points to the commit I think
it does.”

— If someone else has pushed new commits, the push is rejected instead of over-
writing their work.

6.0.1 Typical rebase 4+ push flow
Update local view of remote
git fetch

Rebase your local work onto the remote tip
git rebase origin/main # resolve conflicts if any; git rebase --continue

Safely update the remote branch
git push --force-with-lease

6.0.2 Example workflow with git stash

6.0.2.1 1. Check repo status

24

$ git status
On branch main
Your branch is up to date with 'origin/main'.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
modified: app.py
modified: utils.py

You’ve made some edits but don’t want to commit yet.

6.0.2.2 2. Stash your changes

$ git stash push -m "WIP: refactor utils"
Saved working directory and index state WIP on main: 1a2b3c4 Add logging

Now the working directory is clean.

6.0.2.3 3. Verify with status

$ git status
On branch main
nothing to commit, working tree clean

The changes are hidden away.

6.0.2.4 4. List stashes

$ git stash list
stash@{0}: On main: WIP: refactor utils

Your stash is safely stored.

25

6.0.2.5 5. Switch branch, pull, or do other work

$ git switch feature-branch
Switched to branch 'feature-branch'

6.0.2.6 6. Apply the stash back

$ git stash apply stash@{0}

On branch feature-branch

Changes not staged for commit:
modified: app.py
modified: utils.py

Changes are back, but the stash still exists in the list.

6.0.2.7 7. Or use pop to apply and remove

$ git stash pop
On branch feature-branch
Changes not staged for commit:
modified: app.py
modified: utils.py
Dropped refs/stash@{0} (abcl123def456...)

6.0.2.8 8. Confirm stash list is empty

$ git stash list
(no output - list is empty)

summary

¢ You edited files.
e git stash push cleaned your working directory but saved changes.
o Later, git stash apply or git stash pop restored those changes.

26

6.1 Rebuild the index respecting .gitignore

If you have modified .gitignore and you already pushed some files that you did not want to
push, to remove those files already pushed to Github, you need to remove them from the git
index to untrack them.

git rm -r --cached . #redo all the index

git add .

git commit -m "Reindex: drop ignored files from repo"
git push origin <your-branch>

to remove specific folder or files:

git rm -r --cached .Rhistory .Rproj.user # "-r is needed for a directory

6.2 Unstage and untrack

o unstage = remove from the staging area (index), but keep the file under Git’s tracking.
e untrack = stop Git from tracking the file altogether.

6.2.1 To unstage (but keep tracking):
If you already ran git add file.txt and want to undo that:

git reset HEAD file.txt

Now file.txt is back in “modified” state but not staged. To unstage everything:

git reset HEAD

6.2.2 To unstage:
If a file is already committed to the repo but you want Git to forget it:

git rm --cached file.txt

e ——cached removes it from the index (tracking) but leaves it in your working directory.
e Next commit will record the removal.

27

o If you want to untrack entire directories:

git rm -r --cached my_folder/

6.2.3 Prevent tracking in the future

Add the file or folder to .gitignore so Git won’t pick it up again:

.gitignore
file.txt
my_folder/

6.3 Best workflow with GitHub from Colab (or a local device)

Pre-req: Local repo is a clone of the GitHub repo with aligned HEAD

1. Keep sync with the upstream original owner repo. On GitHub, in the forked repo (under
your account), Click on “Sync fork”.

2. Open (or create) a notebook from G-drive to work with in Colab.

3. Then, mount the G-drive. If on a local device, use the same workflow (open or create a
notebook from the project directory).

4. In a termnal of Colab (or a terminal in VSC in a local device)
e git pull or git pull --ff or (safer method: git pull --ff-only)
If permission denied on G-drive, run this first then repeat git pull.
chmod +x .git/hooks/*
3. After editing, and before finish
git status
git add files-to-commit

git commit -m "commit message"
git push # this will push the files-to-commit to your fork/main

28

6.4 Team Github workflow

6.5 Initial setup

1. Fork and Clone

e Fork: You click “Fork” on GitHub — it creates a copy of the repo under your GitHub
account. Navigate to https://github.com/ywanglab/STAT4160, then click on “Fork”.

o Clone: You download a local copy of your fork to your computer. (only do this for the
first time)

So after forking, you typically do (only for the first time)

git clone https://github.com/YOUR-USERNAME/REPO-NAME.git #REPO-NAME should be STAT4160
cd REPO-NAME # the REPO-NAME should be STAT4160, cd to the current working directory

2. Add the original repo as “upstream”

Your fork is linked to your GitHub account (the “origin”). To stay in sync with the original
project, add a remote for the source repository:

git remote add upstream https://github.com/ywanglab/STAT4160

Check remotes:
git remote -v

origin https://github.com/YOUR-USERNAME/REPO-NAME.git (push/pull)
upstream https://github.com/ORIGINAL-OWNER/REPO-NAME.git (pull only)

3. Create a feature branch in your fork

Never work directly on main. Instead create a new branch:

git checkout -b feature/my-contribution # eg: homework/your_initial
edit files...

after you done your edit, push changes to origin/main

git add files-to-commit # git add filename (or directoryname) use . rarely as it will add

git commit -m "Fix bug in utils"

git push -u origin feature/my-contribution #git push by default push changes to origin/main

29

4. Open a Pull Request (PR) (only do this for the contribution you want to make, such as
homework)

5. Go to your fork on GitHub (https://github.com/YOUR-USERNAME/REPO-NAME).

6. GitHub will show a banner: “You recently pushed to feature/my-contribution. Do
you want to open a Pull Request?”

7. Click it — select base repository = (upstream) original owner repo, compare
= your branch.

Note: head repository — your fork (e.g. YOUR-USERNAME/REPO-NAME) and branch
(feature/...) that contains your changes.

4. Write a good description and submit the PR.

Now the maintainers of the original repo will review it. If approved, they’ll merge it.

6.6 Keep your fork in sync

Before making new contributions, update your fork/main with the latest main from up-
stream:

Option A) Do it on GitHub: If GitHub shows something like “This branch is 1 commit behind”,
“Sync Fork”.

Option B): do it via terminal:

git checkout main # checkout main
git pull upstream main # pull from the upstream original repo
git push origin main # update your fork on GitHub

Then branch off main again for your next feature.

6.7 Git FAQ

0) Explain staging area, working area, working directory

o Working directory / working tree (aka “working area”): The files on your disk
you edit.

o Staging area (index): The “snapshot-in-progress” you will commit next. You move
changes here with git add.

30

o Local repository (.git): The database of commits/objects/refs. git commit writes
a new commit to this store.
e HEAD: A pointer to your current commit/branch.

6.7.1 Working directory (working tree) vs “actual files on disk”? Save vs
commit? What are “index” and “working tree”?

o Working directory/working files / working tree: the files on your disk under the
repo. This is the “actual files on disk” for the project (both tracked and untracked).
What git status calls “Changes not staged for commit” (for tracked edits) and “Un-
tracked files”.

o Index (staging area): a binary file at .git/index that holds the exact snapshot
you will commit next. You put changes into the index with git add. Git status calls
“Changes to be cmmitted”.

Compare the layers

git status # see working tree vs index vs HEAD
git diff # working tree vs index: what you edited but haven't staged
git diff --staged # index vs HEAD: what's staged vs. last commit

git log --oneline --graph --decorate --all # visualize history (merge vs rebase)
Flow:

(edit & save) - working tree
git add -+ index
git commit - new commit from the index

o Local repository: all Git objects in .git/ (commits, trees, blobs, refs).
Save vs commit

o Save: editor/OS action that writes a file to disk (affects working tree only).
¢ Commit: Git action that records a snapshot of the index into the repository history
(.git/objects) with a message and metadata.

31

6.7.2 1) After git add, how to undo (un-add) a file or directory?
Unstage (but keep your edits in the working tree):

Preferred (Git 2.23+)
git restore --staged <file-or-dir>

Older (still works)
git reset HEAD <file-or-dir>

Unstage everything that’s currently staged
git restore --staged .

or
git reset #eqiv to: git reset --mixed HEAD: reset the index to match the current HEAD (unst

Partially unstage hunks:

git restore --staged -p <file> # or: git reset -p <file>

If you accidentally started tracking something (e.g., should be ignored), remove it from the
index only:

git rm --cached -r <path> # leaves the file(s) on disk, stops tracking

6.7.3 2) After git commit, how to un-commit?
Undo the last commit locally (choose how much to keep):

git reset --soft HEAD~1 # keep changes staged
git reset --mixed HEAD~1 # keep changes in working tree (unstaged) [default]
git reset --hard HEAD~1 # discard the commit AND your local changes (danger!)

If the commit is already pushed (others may have pulled it), prefer:

git revert <commit-sha> # makes a new commit that undoes the old one

Fix or edit the most recent commit without changing its parent:

32

git commit --amend

git commit --amend (more)

Rewrites the last commit.

+ Fix message only:

git commit --amend -m "Better message"

o Add forgotten changes (stage them first):

git add <files>
git commit --amend --no-edit # keep prior message

o Change author/committer timestamp:

git commit --amend --no-edit --reset-author

Results in a new commit SHA. If the old commit was pushed, you’ll need:

git push --force-with-lease

If you must rewrite published history (e.g., after a local rebase), push safely:

git push --force-with-lease

6.7.4 3) When git push, what conflicts can occur? How to fix them?

A “push conflict” is usually a non-fast-forward rejection because the remote has new commits
you don’t have.

Symptom: rejected] ... (fetch first) or non-fast-forward.

Fix:

git fetch origin

Option A: merge
git merge origin/<branch>

Option B: rebase (keeps history linear)
git rebase origin/<branch>

33

After Having Resolved any conflicts, then:
git push

6.7.5 4) When git pull, what conflicts can occur, and how to fix them?

git pull = fetch + merge (by default) or fetch + rebase (with --rebase). Conflicts occur
when both sides changed the same lines or one side edits a file the other deleted.

Merge flow (default pull):

git pull

If conflicts:

git status

open files, resolve <<<K<K<KKL ======= >>>>>>> markers
git add <resolved-file>...

git commit # completes the merge

Rebase flow (git pull --rebase):

git pull --rebase

If conflicts:

git status

resolve, then:

git add <resolved-file>...

git rebase --continue

or:

git rebase --abort # to go back to the state right before rebase

Related:

e git rebase --continue — after resolving a conflict, proceed to the next commit.

e git rebase --skip — drop the problematic commit and continue.

e git rebase --quit — stop the rebase without resetting your current files/HEAD:; it
just removes rebase state (rarely needed—--abort is the safe “put it back” button).

Helpful:

34

git mergetool

launch a diff/merge tool if configured

6.7.6 5) Why create a new branch instead of working on main?

Keep main clean, stable, and deployable.

Isolate work so you can open focused pull requests and get review.
Parallel development without stepping on each other.

Safer experiments; easy to abandon a branch if it doesn’t pan out.
Release /hotfix workflows (e.g., release/*, hotfix/*).

CI/policy gates per branch.

6.7.7 6) How git stash works and why we need it

git stash saves your uncommitted changes (working tree and staged) into a stack entry,
then reverts your tree to a clean state—handy when you must switch branches or pull /rebase
but aren’t ready to commit.

Common commands:

git
git
git
git
git
git
git
git

stash
stash
stash
stash
stash
stash
stash
stash

Partial

git
git

stash
stash

push
push
push
list
show

-m "wip: message"
-u
-a

-p stash@{0}

apply stash@{0}
pop stash@{0}

drop

stash@{0}

/ path-specific:

P
push

-- <pathl> <path2>

save staged + unstaged
include untracked files
include ignored files

see what’s inside
apply, keep it on the stack
apply and remove from the stack

H

interactively stash hunks
stash only these paths

35

6.7.8 8) Difference between git reset and git revert

e git reset: Moves a branch/HEAD to another commit (optionally touching index and
working tree). It rewrites history for that branch.

— —-soft: move HEAD only (keep index + working tree)

— —-mixed (default): move HEAD + reset index (keep working tree)

— —-hard: move HEAD + reset index + working tree (discard changes)
— Use for local surgery (e.g., uncommit/squash) before sharing.

e git revert: Creates a new commit that undoes the changes from a prior commit.
Does not rewrite history; safe on shared branches.

Rule of thumb: Use revert for public history, reset for local/private history.

6.7.9 9) How to remove files that are already pushed? Explain git rm --cached
If you only want Git to stop tracking the file(s) but keep them on disk:

git rm --cached -r <path>

echo "<path>/" >> .gitignore

git commit -m "Stop tracking <path>"
git push

git rm --cached removes from the index (stops tracking) but does not delete
your local copy.

If sensitive/big files are already in history and must be purged:

o Use git filter-repo (recommended) or BFG:

after installing git-filter-repo
git filter-repo --path <path> --invert-paths
git push --force-with-lease --all
git push --force-with-lease --tags

o Rotate any exposed secrets and tell collaborators to re-clone or hard-reset to the new
history.

36

6.7.10 10) Difference between git pull --rebase and git pull -ff

e git pull --rebase: Fetch, then reapply your local commits on top of the updated
upstream. This rewrites your local commits for a cleaner, linear history. Configure
permanently:

git config --global pull.rebase true # always rebase on pull
or for omne repo:
git config pull.rebase true
— -f is a short flag for fetch —force, so —ff is basically “fetch with force (twice)””.

o If you don’t use —-rebase, then git pull merges by default.--ff-only keeps history
clean by aborting instead of making a merge commit when a fast-forward isn’t possible.

6.7.11 11) Explain git rebase

Rebase “moves” your commits to a new base commit.

Example: keep a feature branch up to date without merge commits:

git checkout feature

git fetch origin

git rebase origin/main # replay feature’s commits on top of latest main
resolve conflicts per-commit:

git add <resolved-file>...

git rebase --continue

when done and if previously pushed:

git push --force-with-lease

Interactive rebase to clean history (reorder/squash/edit/drop):

git rebase -i HEAD~5

pick | reword | squash | fixup | edit | drop
tip: use autosquash:

git commit --fixup <sha>

git rebase -i --autosquash origin/main

Advanced: move a range of commits to a different base:

37

git rebase --onto <new-base> <old-base> <branch>

Guidelines

e Don’t rebase commits others are already depending on (unless your team agrees and you
use --force-with-lease).
o Test after rebases; conflicts are resolved commit-by-commit.

6.8 4) Difference between git rebase and git merge

Goal (both): bring changes from one line of history into another.

6.8.1 Merge

o Creates a merge commit that has two parents; preserves true history.
e Doesn’t rewrite existing commits.
e Safer on shared branches; good for “what actually happened.”

Before
main: A---B-—-C

\
feature: D---E

Merge feature —> main

main: A---B---C---M

/ N\
feature: D-——— E
6.8.2 Rebase

o Rewrites your commits to appear on top of a new base (new SHAs).
o Produces a linear history (no merge commit).
o Avoid rebasing commits others already pulled (or force-push with care).

38

Rebase feature onto latest main
main: A---B---C
\
feature: D'--E' (D and E replayed; new SHAs)

Rule of thumb: merge for public/shared history; rebase to keep your feature branch tidy
before sharing.

6.8.3 On which branch do merge and rebase happen?

e git merge other-branch merges other-branch into the branch you currently have
checked out (the “current branch”). If you want to merge into some target branch, you
must first switch to it:

git switch target
git merge other

e git rebase <upstream> rewrites the current branch so its commits replay on top of
<upstream>:

git switch feature
git rebase origin/main

Advanced: you can rebase a branch without checking it out:

git rebase origin/main feature # rewrites 'feature'

But conceptually, rebase always moves one branch’s commits onto a new base.

6.9 Quick reference (handy snippets)

Unstage everything
git restore --staged .

Uncommit but keep edits
git reset --mixed HEAD~1

Undo a pushed commit safely
git revert <sha>

39

Resolve pull with rebase and conflicts
git pull --rebase

...resolve...

git rebase --continue

Stop tracking a file/folder (keep it locally)
git rm --cached -r <path> && echo "<path>/" >> .gitignore

Fast-forward only pull (abort if divergence)
git pull --ff-only

6.10 1) Index vs. working files (aka working tree)

Working files / working tree

e The actual files on disk that you edit and save in your editor.

e Can include both tracked and untracked files.

o What git status calls “Changes not staged for commit” (for tracked edits) and “Un-
tracked files”.

Index / staging area

o A snapshot Git keeps (in .git/index) of exactly what will be committed next.
¢ You put changes into the index with git add.
o What git status calls “Changes to be committed”.

Compare the layers

git diff # working tree vs index (what you edited but haven't staged)
git diff --staged # index vs HEAD (what's staged vs last commit)
Flow:

(edit & save) - working tree
git add -+ index
git commit -+ new commit from the index

40

6.11 3) “l saved a file on one branch, then checked out a new
branch and edited it again. What version do | have on disk?”

It depends on whether your first edits were committed and whether switching branches would
overwrite those edits.

6.11.1 Cases

1. You did NOT commit, and the switch would overwrite your changes Git
blocks the switch:

error: Your local changes to the following files would be overwritten by checkout:
path/to/file

Fix: commit, stash, or discard those changes first.

2. You did NOT commit, and the switch does NOT overwrite your changes Git
allows the switch and carries your uncommitted edits into the new branch. On disk
you see your latest saved content (not the branch’s clean version). The changes now
show as “modified” on the new branch. If you commit now, the commit lands on the
new branch.

3. You DID commit on the first branch When you switch, Git rewrites your working

tree to match the target branch’s snapshot. You’ll see the target branch’s version of the
file on disk.

4. Untracked files Untracked files follow you across branches. If an untracked path would
conflict with a tracked file in the target branch, Git blocks the switch unless you stash
with -u or clean with git clean -fd (dangerous).

6.11.2 Tips

o To keep branch changes separate, either commit/stash before switching or use separate
work trees:

git worktree add ../repo-main main
git worktree add ../repo-feature feature

o To forcibly see a file as it exists on another branch (without switching):

git show other-branch:path/to/file > path/to/file # overwrites file on disk
or, with restore (safer semantics):
git restore --source other-branch -- path/to/file

41

6.12 4) Suggested team workflow (you maintain main, teammates
contribute)

Below is a light-weight, reliable feature-branch + PR flow (GitHub/GitLab/Bitbucket com-
patible).

6.12.1 Repository / policy (one-time setup)

¢ Protect main: disallow direct pushes, require PRs, require at least 1 review, require CI
to pass, and (optionally) Require linear history.

e Prefer “Squash and merge” or “Rebase and merge” on PRs to keep main tidy.

o Add CODEOWNERS (optional) so certain paths require your review.

e Encourage small, focused PRs.

6.12.2 Personal Git config (everyone)

git config --global pull.rebase true # rebase on pull; cleaner history
git config --global fetch.prune true # remove deleted remote branches on fetch
git config --global rerere.enabled true # remember conflict resolutions (handy)

6.12.3 Contributor workflow (feature branch)

1) Sync and branch off up-to-date main

git switch main

git fetch origin

git pull --ff-only # keep local main as a clean fast-forward
git switch -c feature/short-desc

2) Develop
...edit, test, commit in small logical chunks...
git add -p

git commit -m "feat: short message"

3) Keep branch current (periodically)

42

git fetch origin
git rebase origin/main # replay your commits on latest main
resolve conflicts =+ git add ... = git rebase --continue

4) Publish and open PR
git push -u origin feature/short-desc
(Open PR, link issue, ensure CI passes, request review)

5) Address review

Use fixup commits for clean history:
git commit --fixup <sha-to-fix>

git rebase -i -—autosquash origin/main
git push --force-with-lease

6.12.4 Maintainer (you) merging PRs

o FEnsure tests pass, reviews done.

o Choose Squash & Merge (one clean commit on main) or Rebase & Merge (preserve
individual commits but linear).

o After merge:

Keep your local main clean and current
git switch main
git pull --ff-only

¢ Optionally tag releases:

git tag -a v1.2.3 -m "Release 1.2.3"
git push origin v1.2.3

6.12.5 Hotfixes

o Branch from main: git switch -c hotfix/issue-123
o Patch, test, PR, merge — tag a patch release.

6.12.6 Common “gotchas” and fixes
o Push rejected (non-fast-forward): git fetch origin &% git rebase origin/main

(then resolve & push).
¢« Rebased your feature and need to update PR: git push --force-with-lease.

43

o Can’t switch branches due to local edits: commit, git stash (use -u to include
untracked), or discard.

6.12.7 Quick reference of commands mentioned

See differences between layers
git status

git diff

git diff --staged

Stage/unstage in parts (hunks)
git add -p
git restore --staged -p <file>

Stash changes

git stash push -m "wip" # tracked files

git stash push -u -m "wip" # include untracked

git stash list

git stash show -p stash@{0}

git stash pop # apply & drop top entry

Safe push after history rewrite
git push --force-with-lease

If you want, tell me which platform you host on (GitHub/GitLab/etc.) and whether you
prefer “squash” or “rebase” merges—I can give you a one-page checklist of exact settings and
the minimal command set your team should follow

44

7 My Jupyter Notebook

Yi Wang (boldfaced using ** **)
Educator AUM
The following line is italicized using * *

I am interest in data science because it is a discipline that I feel love with.

7.0.1 Perform addtion

code block
1+1

7.0.2 Horizontal Rule

Three or more

first rule using ***

using dashes —

Using (underscores)

45

7.0.3 Bulet list
using *

o Bird
o Frog
o Cat
e Dog

7.0.4 Numbered list

using 1. item (there is a space between 1. and item)

1. Apple
2. Pear
3. Peach

7.0.5 Tables

left-aligned centered right-aligned

1/2/2020 Mary Apple
1/3 Johnason Tomato

7.0.6 Hyperlinks

Click here to access my github account.

7.0.7 Images

Figure 7.1: A computer monitor

7.0.8 Code/Syntax highlighting

s = "Python syntax highlighting"
print s

46

https://github.com/ywanglab

7.0.9 Blocked quotes

using >
Blockquotes are very handy in email to emulate reply text.

This line is part of the same quote.

7.0.10 Strikethrough

using ~~ before and after a phrase

Leot] o

47

8 Homework Assignments

I will use some assignments from https://cognitiveclass.ai.

1. Browser Course & Projects. Search for Python for Data Science. Enroll Now the
class, and Go to the Course, and Start the Course.

2. Complete the following assignments from Modules 1-4 and Part of Module 5. Exclud-
ing the API section in Module 5.

Module Contents Suggested Deadlines

Module 1 Python Basics 10/09/2023

Module 2 Python Data Structures 10/09/2023

Module 3 Python Prrogramming 10/09/2023
Fundamentals

Module 4 Working with Data in Python 10/16/2023

Module 5 Working with Numpy Arrays 10/16/2023
(Excluding Simple APIs)

Final Exam Optional

Complete all Practice Questions, Review Questions and Labs. After your complet-
ing all the assignments, click on Progress, print the page (in PDF or hard copy), and
send it to me. The page should show your username on the top right corner.

3. Enroll in the course Data Anlaysis with Python.

Complete the following assignments.

Module Contents Suggested Deadlines
Module 1 Introduction 10/23/2023
Module 2 Data Wrangling 10/30/2023

Module 3 Exploratory Data Analysis 11/06/2023

4. Enroll in the course Data Visualization with Python.

Complete the following assignments.

48

https://cognitiveclass.ai

Module Contents Suggested Deadlines
Module 1 Introduction to Visualization 11/13/2023

Module 2 Basic Visualization Tools 11/20/2023

Module 3 Specialized Visualization Tools 11/27/2023

Module 4 Advanced Visualizaiton Tools (Optional)

49

References

50

	Preface
	Introduction
	Setting-up Python Computing Environment
	Use Google Colab
	How to run a project file from your Google Drive?

	On your own computer

	Setting-up R Studio Computing Environment
	Setting up your own computing environment on a personal computer
	Use R-Studio Cloud (No setting-up needed)

	Use Git and GitHub
	Download Git
	Establish a connection between a local repo and a remote GitHub repo
	Clone an existing repo on GitHub
	Initializing a Git Directory Locally First

	Some other common commands
	Use Git help
	When the upstream repo changes
	Create branch
	Merge branch to main branch
	Handle large files (>= 150Mb) on GitHub
	Contribute by forking a GitHub repo and commit to the forked repo and create a pull request (refer to [the best workflow below]Section)
	Project
	More on git
	Git pull: What does --ff mean?
	git pull or git pull --ff (merge fallback)
	Option 2: git pull --rebase (replay your work on top of remote)

	How to set opitons gloabally

	Concrete example: what does ``merge C with D to produce M'' look like?
	Commits and changes
	You run: git pull (merge strategy) or git merge origin/main

	3) What is git push --force-with-lease (and why it's safer than --force)?
	Typical rebase + push flow
	Example workflow with git stash
	Rebuild the index respecting .gitignore
	Unstage and untrack
	To unstage (but keep tracking):
	To unstage:
	Prevent tracking in the future

	Best workflow with GitHub from Colab (or a local device)
	Team Github workflow
	Initial setup
	Keep your fork in sync
	Git FAQ
	Working directory (working tree) vs ``actual files on disk''? Save vs commit? What are ``index'' and ``working tree''?
	1) After git add, how to undo (un‑add) a file or directory?
	2) After git commit, how to un‑commit?
	3) When git push, what conflicts can occur? How to fix them?
	4) When git pull, what conflicts can occur, and how to fix them?
	5) Why create a new branch instead of working on main?
	6) How git stash works and why we need it
	8) Difference between git reset and git revert
	9) How to remove files that are already pushed? Explain git rm --cached
	10) Difference between git pull --rebase and git pull -ff
	11) Explain git rebase

	4) Difference between git rebase and git merge
	Merge
	Rebase
	On which branch do merge and rebase happen?

	Quick reference (handy snippets)
	1) Index vs. working files (aka working tree)
	3) ``I saved a file on one branch, then checked out a new branch and edited it again. What version do I have on disk?''
	Cases
	Tips

	4) Suggested team workflow (you maintain main, teammates contribute)
	Repository / policy (one‑time setup)
	Personal Git config (everyone)
	Contributor workflow (feature branch)
	Maintainer (you) merging PRs
	Hotfixes
	Common ``gotchas'' and fixes
	Quick reference of commands mentioned

	My Jupyter Notebook
	Perform addtion
	Horizontal Rule
	Bulet list
	Numbered list
	Tables
	Hyperlinks
	Images
	Code/Syntax highlighting
	Blocked quotes
	Strikethrough

	Homework Assignments
	References

